Properties

Label 3328.2.k
Level $3328$
Weight $2$
Character orbit 3328.k
Rep. character $\chi_{3328}(255,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $216$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3328, [\chi])\).

Total New Old
Modular forms 944 232 712
Cusp forms 848 216 632
Eisenstein series 96 16 80

Trace form

\( 216 q - 184 q^{9} - 32 q^{33} + 8 q^{41} + 96 q^{57} - 8 q^{65} - 24 q^{73} + 88 q^{81} - 24 q^{89} + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3328, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3328, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3328, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1664, [\chi])\)\(^{\oplus 2}\)