Defining parameters
Level: | \( N \) | \(=\) | \( 3328 = 2^{8} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3328.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3328, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 944 | 232 | 712 |
Cusp forms | 848 | 216 | 632 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3328, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3328, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3328, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1664, [\chi])\)\(^{\oplus 2}\)