Properties

Label 3328.2.b.x
Level $3328$
Weight $2$
Character orbit 3328.b
Analytic conductor $26.574$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1665,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1665");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + 3 \beta_1 q^{5} + \beta_{3} q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{3} + 3 \beta_1 q^{5} + \beta_{3} q^{7} - 2 q^{9} + 2 \beta_{2} q^{11} + \beta_1 q^{13} - 3 \beta_{3} q^{15} - 3 q^{17} - 2 \beta_{2} q^{19} + 5 \beta_1 q^{21} - 4 \beta_{3} q^{23} - 4 q^{25} + \beta_{2} q^{27} - 10 \beta_1 q^{29} - 10 q^{33} + 3 \beta_{2} q^{35} + 3 \beta_1 q^{37} - \beta_{3} q^{39} - 3 \beta_{2} q^{43} - 6 \beta_1 q^{45} - \beta_{3} q^{47} - 2 q^{49} - 3 \beta_{2} q^{51} + 4 \beta_1 q^{53} - 6 \beta_{3} q^{55} + 10 q^{57} + 2 \beta_{2} q^{59} - 2 \beta_{3} q^{63} - 3 q^{65} + 6 \beta_{2} q^{67} - 20 \beta_1 q^{69} + 3 \beta_{3} q^{71} - 14 q^{73} - 4 \beta_{2} q^{75} + 10 \beta_1 q^{77} + 4 \beta_{3} q^{79} - 11 q^{81} + 8 \beta_{2} q^{83} - 9 \beta_1 q^{85} + 10 \beta_{3} q^{87} + 10 q^{89} + \beta_{2} q^{91} + 6 \beta_{3} q^{95} - 2 q^{97} - 4 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{9} - 12 q^{17} - 16 q^{25} - 40 q^{33} - 8 q^{49} + 40 q^{57} - 12 q^{65} - 56 q^{73} - 44 q^{81} + 40 q^{89} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1665.1
0.618034i
1.61803i
1.61803i
0.618034i
0 2.23607i 0 3.00000i 0 2.23607 0 −2.00000 0
1665.2 0 2.23607i 0 3.00000i 0 −2.23607 0 −2.00000 0
1665.3 0 2.23607i 0 3.00000i 0 −2.23607 0 −2.00000 0
1665.4 0 2.23607i 0 3.00000i 0 2.23607 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.2.b.x 4
4.b odd 2 1 inner 3328.2.b.x 4
8.b even 2 1 inner 3328.2.b.x 4
8.d odd 2 1 inner 3328.2.b.x 4
16.e even 4 1 416.2.a.d 2
16.e even 4 1 832.2.a.m 2
16.f odd 4 1 416.2.a.d 2
16.f odd 4 1 832.2.a.m 2
48.i odd 4 1 3744.2.a.q 2
48.i odd 4 1 7488.2.a.cw 2
48.k even 4 1 3744.2.a.q 2
48.k even 4 1 7488.2.a.cw 2
208.o odd 4 1 5408.2.a.q 2
208.p even 4 1 5408.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.a.d 2 16.e even 4 1
416.2.a.d 2 16.f odd 4 1
832.2.a.m 2 16.e even 4 1
832.2.a.m 2 16.f odd 4 1
3328.2.b.x 4 1.a even 1 1 trivial
3328.2.b.x 4 4.b odd 2 1 inner
3328.2.b.x 4 8.b even 2 1 inner
3328.2.b.x 4 8.d odd 2 1 inner
3744.2.a.q 2 48.i odd 4 1
3744.2.a.q 2 48.k even 4 1
5408.2.a.q 2 208.o odd 4 1
5408.2.a.q 2 208.p even 4 1
7488.2.a.cw 2 48.i odd 4 1
7488.2.a.cw 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3328, [\chi])\):

\( T_{3}^{2} + 5 \) Copy content Toggle raw display
\( T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} - 5 \) Copy content Toggle raw display
\( T_{11}^{2} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T + 3)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 45)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 180)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 45)^{2} \) Copy content Toggle raw display
$73$ \( (T + 14)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 320)^{2} \) Copy content Toggle raw display
$89$ \( (T - 10)^{4} \) Copy content Toggle raw display
$97$ \( (T + 2)^{4} \) Copy content Toggle raw display
show more
show less