Properties

Label 3328.2.b.r.1665.1
Level $3328$
Weight $2$
Character 3328.1665
Analytic conductor $26.574$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1665,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1665");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1665.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3328.1665
Dual form 3328.2.b.r.1665.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -1.00000i q^{5} +3.00000 q^{7} +2.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} -1.00000i q^{5} +3.00000 q^{7} +2.00000 q^{9} +2.00000i q^{11} +1.00000i q^{13} -1.00000 q^{15} -3.00000 q^{17} -2.00000i q^{19} -3.00000i q^{21} +4.00000 q^{23} +4.00000 q^{25} -5.00000i q^{27} +2.00000i q^{29} -4.00000 q^{31} +2.00000 q^{33} -3.00000i q^{35} -5.00000i q^{37} +1.00000 q^{39} +12.0000 q^{41} +7.00000i q^{43} -2.00000i q^{45} +9.00000 q^{47} +2.00000 q^{49} +3.00000i q^{51} -4.00000i q^{53} +2.00000 q^{55} -2.00000 q^{57} +6.00000i q^{59} -4.00000i q^{61} +6.00000 q^{63} +1.00000 q^{65} +10.0000i q^{67} -4.00000i q^{69} -15.0000 q^{71} +2.00000 q^{73} -4.00000i q^{75} +6.00000i q^{77} +8.00000 q^{79} +1.00000 q^{81} +4.00000i q^{83} +3.00000i q^{85} +2.00000 q^{87} -2.00000 q^{89} +3.00000i q^{91} +4.00000i q^{93} -2.00000 q^{95} +10.0000 q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{7} + 4 q^{9} - 2 q^{15} - 6 q^{17} + 8 q^{23} + 8 q^{25} - 8 q^{31} + 4 q^{33} + 2 q^{39} + 24 q^{41} + 18 q^{47} + 4 q^{49} + 4 q^{55} - 4 q^{57} + 12 q^{63} + 2 q^{65} - 30 q^{71} + 4 q^{73} + 16 q^{79} + 2 q^{81} + 4 q^{87} - 4 q^{89} - 4 q^{95} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i −0.974679 0.223607i \(-0.928217\pi\)
0.974679 0.223607i \(-0.0717831\pi\)
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) − 2.00000i − 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) 0 0
\(21\) − 3.00000i − 0.654654i
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) − 5.00000i − 0.962250i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) − 3.00000i − 0.507093i
\(36\) 0 0
\(37\) − 5.00000i − 0.821995i −0.911636 0.410997i \(-0.865181\pi\)
0.911636 0.410997i \(-0.134819\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) 7.00000i 1.06749i 0.845645 + 0.533745i \(0.179216\pi\)
−0.845645 + 0.533745i \(0.820784\pi\)
\(44\) 0 0
\(45\) − 2.00000i − 0.298142i
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 3.00000i 0.420084i
\(52\) 0 0
\(53\) − 4.00000i − 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) − 4.00000i − 0.512148i −0.966657 0.256074i \(-0.917571\pi\)
0.966657 0.256074i \(-0.0824290\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 10.0000i 1.22169i 0.791748 + 0.610847i \(0.209171\pi\)
−0.791748 + 0.610847i \(0.790829\pi\)
\(68\) 0 0
\(69\) − 4.00000i − 0.481543i
\(70\) 0 0
\(71\) −15.0000 −1.78017 −0.890086 0.455792i \(-0.849356\pi\)
−0.890086 + 0.455792i \(0.849356\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) − 4.00000i − 0.461880i
\(76\) 0 0
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 3.00000i 0.325396i
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 3.00000i 0.314485i
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) − 4.00000i − 0.398015i −0.979998 0.199007i \(-0.936228\pi\)
0.979998 0.199007i \(-0.0637718\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) −3.00000 −0.292770
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) − 19.0000i − 1.81987i −0.414751 0.909935i \(-0.636131\pi\)
0.414751 0.909935i \(-0.363869\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) − 4.00000i − 0.373002i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) −9.00000 −0.825029
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) − 12.0000i − 1.08200i
\(124\) 0 0
\(125\) − 9.00000i − 0.804984i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 7.00000 0.616316
\(130\) 0 0
\(131\) 21.0000i 1.83478i 0.397991 + 0.917389i \(0.369707\pi\)
−0.397991 + 0.917389i \(0.630293\pi\)
\(132\) 0 0
\(133\) − 6.00000i − 0.520266i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 4.00000 0.341743 0.170872 0.985293i \(-0.445342\pi\)
0.170872 + 0.985293i \(0.445342\pi\)
\(138\) 0 0
\(139\) 19.0000i 1.61156i 0.592216 + 0.805779i \(0.298253\pi\)
−0.592216 + 0.805779i \(0.701747\pi\)
\(140\) 0 0
\(141\) − 9.00000i − 0.757937i
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) − 2.00000i − 0.164957i
\(148\) 0 0
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 4.00000i 0.321288i
\(156\) 0 0
\(157\) − 22.0000i − 1.75579i −0.478852 0.877896i \(-0.658947\pi\)
0.478852 0.877896i \(-0.341053\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) − 20.0000i − 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) 0 0
\(165\) − 2.00000i − 0.155700i
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 4.00000i − 0.305888i
\(172\) 0 0
\(173\) 16.0000i 1.21646i 0.793762 + 0.608229i \(0.208120\pi\)
−0.793762 + 0.608229i \(0.791880\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) − 11.0000i − 0.822179i −0.911595 0.411089i \(-0.865148\pi\)
0.911595 0.411089i \(-0.134852\pi\)
\(180\) 0 0
\(181\) − 20.0000i − 1.48659i −0.668965 0.743294i \(-0.733262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −5.00000 −0.367607
\(186\) 0 0
\(187\) − 6.00000i − 0.438763i
\(188\) 0 0
\(189\) − 15.0000i − 1.09109i
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 0 0
\(195\) − 1.00000i − 0.0716115i
\(196\) 0 0
\(197\) − 15.0000i − 1.06871i −0.845262 0.534353i \(-0.820555\pi\)
0.845262 0.534353i \(-0.179445\pi\)
\(198\) 0 0
\(199\) 26.0000 1.84309 0.921546 0.388270i \(-0.126927\pi\)
0.921546 + 0.388270i \(0.126927\pi\)
\(200\) 0 0
\(201\) 10.0000 0.705346
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) 0 0
\(205\) − 12.0000i − 0.838116i
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) − 27.0000i − 1.85876i −0.369129 0.929378i \(-0.620344\pi\)
0.369129 0.929378i \(-0.379656\pi\)
\(212\) 0 0
\(213\) 15.0000i 1.02778i
\(214\) 0 0
\(215\) 7.00000 0.477396
\(216\) 0 0
\(217\) −12.0000 −0.814613
\(218\) 0 0
\(219\) − 2.00000i − 0.135147i
\(220\) 0 0
\(221\) − 3.00000i − 0.201802i
\(222\) 0 0
\(223\) 15.0000 1.00447 0.502237 0.864730i \(-0.332510\pi\)
0.502237 + 0.864730i \(0.332510\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 9.00000i 0.594737i 0.954763 + 0.297368i \(0.0961089\pi\)
−0.954763 + 0.297368i \(0.903891\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) 27.0000 1.76883 0.884414 0.466702i \(-0.154558\pi\)
0.884414 + 0.466702i \(0.154558\pi\)
\(234\) 0 0
\(235\) − 9.00000i − 0.587095i
\(236\) 0 0
\(237\) − 8.00000i − 0.519656i
\(238\) 0 0
\(239\) −27.0000 −1.74648 −0.873242 0.487286i \(-0.837987\pi\)
−0.873242 + 0.487286i \(0.837987\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) − 16.0000i − 1.02640i
\(244\) 0 0
\(245\) − 2.00000i − 0.127775i
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) − 8.00000i − 0.504956i −0.967603 0.252478i \(-0.918755\pi\)
0.967603 0.252478i \(-0.0812455\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) −7.00000 −0.436648 −0.218324 0.975876i \(-0.570059\pi\)
−0.218324 + 0.975876i \(0.570059\pi\)
\(258\) 0 0
\(259\) − 15.0000i − 0.932055i
\(260\) 0 0
\(261\) 4.00000i 0.247594i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 2.00000i 0.122398i
\(268\) 0 0
\(269\) − 4.00000i − 0.243884i −0.992537 0.121942i \(-0.961088\pi\)
0.992537 0.121942i \(-0.0389122\pi\)
\(270\) 0 0
\(271\) −15.0000 −0.911185 −0.455593 0.890188i \(-0.650573\pi\)
−0.455593 + 0.890188i \(0.650573\pi\)
\(272\) 0 0
\(273\) 3.00000 0.181568
\(274\) 0 0
\(275\) 8.00000i 0.482418i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) 0 0
\(285\) 2.00000i 0.118470i
\(286\) 0 0
\(287\) 36.0000 2.12501
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) − 10.0000i − 0.586210i
\(292\) 0 0
\(293\) 7.00000i 0.408944i 0.978872 + 0.204472i \(0.0655478\pi\)
−0.978872 + 0.204472i \(0.934452\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) 0 0
\(297\) 10.0000 0.580259
\(298\) 0 0
\(299\) 4.00000i 0.231326i
\(300\) 0 0
\(301\) 21.0000i 1.21042i
\(302\) 0 0
\(303\) −4.00000 −0.229794
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) 26.0000i 1.48390i 0.670456 + 0.741949i \(0.266098\pi\)
−0.670456 + 0.741949i \(0.733902\pi\)
\(308\) 0 0
\(309\) − 4.00000i − 0.227552i
\(310\) 0 0
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) −23.0000 −1.30004 −0.650018 0.759918i \(-0.725239\pi\)
−0.650018 + 0.759918i \(0.725239\pi\)
\(314\) 0 0
\(315\) − 6.00000i − 0.338062i
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 6.00000i 0.333849i
\(324\) 0 0
\(325\) 4.00000i 0.221880i
\(326\) 0 0
\(327\) −19.0000 −1.05070
\(328\) 0 0
\(329\) 27.0000 1.48856
\(330\) 0 0
\(331\) − 16.0000i − 0.879440i −0.898135 0.439720i \(-0.855078\pi\)
0.898135 0.439720i \(-0.144922\pi\)
\(332\) 0 0
\(333\) − 10.0000i − 0.547997i
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) − 8.00000i − 0.433224i
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) 11.0000i 0.590511i 0.955418 + 0.295255i \(0.0954048\pi\)
−0.955418 + 0.295255i \(0.904595\pi\)
\(348\) 0 0
\(349\) − 7.00000i − 0.374701i −0.982293 0.187351i \(-0.940010\pi\)
0.982293 0.187351i \(-0.0599901\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) 15.0000i 0.796117i
\(356\) 0 0
\(357\) 9.00000i 0.476331i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) − 7.00000i − 0.367405i
\(364\) 0 0
\(365\) − 2.00000i − 0.104685i
\(366\) 0 0
\(367\) −10.0000 −0.521996 −0.260998 0.965339i \(-0.584052\pi\)
−0.260998 + 0.965339i \(0.584052\pi\)
\(368\) 0 0
\(369\) 24.0000 1.24939
\(370\) 0 0
\(371\) − 12.0000i − 0.623009i
\(372\) 0 0
\(373\) − 36.0000i − 1.86401i −0.362446 0.932005i \(-0.618058\pi\)
0.362446 0.932005i \(-0.381942\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) − 8.00000i − 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) 16.0000i 0.819705i
\(382\) 0 0
\(383\) 7.00000 0.357683 0.178842 0.983878i \(-0.442765\pi\)
0.178842 + 0.983878i \(0.442765\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) 0 0
\(387\) 14.0000i 0.711660i
\(388\) 0 0
\(389\) − 6.00000i − 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 21.0000 1.05931
\(394\) 0 0
\(395\) − 8.00000i − 0.402524i
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) −12.0000 −0.593362 −0.296681 0.954977i \(-0.595880\pi\)
−0.296681 + 0.954977i \(0.595880\pi\)
\(410\) 0 0
\(411\) − 4.00000i − 0.197305i
\(412\) 0 0
\(413\) 18.0000i 0.885722i
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 19.0000 0.930434
\(418\) 0 0
\(419\) − 1.00000i − 0.0488532i −0.999702 0.0244266i \(-0.992224\pi\)
0.999702 0.0244266i \(-0.00777600\pi\)
\(420\) 0 0
\(421\) 3.00000i 0.146211i 0.997324 + 0.0731055i \(0.0232910\pi\)
−0.997324 + 0.0731055i \(0.976709\pi\)
\(422\) 0 0
\(423\) 18.0000 0.875190
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) − 12.0000i − 0.580721i
\(428\) 0 0
\(429\) 2.00000i 0.0965609i
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) − 2.00000i − 0.0958927i
\(436\) 0 0
\(437\) − 8.00000i − 0.382692i
\(438\) 0 0
\(439\) −2.00000 −0.0954548 −0.0477274 0.998860i \(-0.515198\pi\)
−0.0477274 + 0.998860i \(0.515198\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 0 0
\(443\) − 11.0000i − 0.522626i −0.965254 0.261313i \(-0.915845\pi\)
0.965254 0.261313i \(-0.0841554\pi\)
\(444\) 0 0
\(445\) 2.00000i 0.0948091i
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) 24.0000i 1.13012i
\(452\) 0 0
\(453\) − 5.00000i − 0.234920i
\(454\) 0 0
\(455\) 3.00000 0.140642
\(456\) 0 0
\(457\) 34.0000 1.59045 0.795226 0.606313i \(-0.207352\pi\)
0.795226 + 0.606313i \(0.207352\pi\)
\(458\) 0 0
\(459\) 15.0000i 0.700140i
\(460\) 0 0
\(461\) 21.0000i 0.978068i 0.872265 + 0.489034i \(0.162651\pi\)
−0.872265 + 0.489034i \(0.837349\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 4.00000 0.185496
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) 30.0000i 1.38527i
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) 0 0
\(473\) −14.0000 −0.643721
\(474\) 0 0
\(475\) − 8.00000i − 0.367065i
\(476\) 0 0
\(477\) − 8.00000i − 0.366295i
\(478\) 0 0
\(479\) −15.0000 −0.685367 −0.342684 0.939451i \(-0.611336\pi\)
−0.342684 + 0.939451i \(0.611336\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) 0 0
\(483\) − 12.0000i − 0.546019i
\(484\) 0 0
\(485\) − 10.0000i − 0.454077i
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 31.0000i 1.39901i 0.714628 + 0.699505i \(0.246596\pi\)
−0.714628 + 0.699505i \(0.753404\pi\)
\(492\) 0 0
\(493\) − 6.00000i − 0.270226i
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −45.0000 −2.01853
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 8.00000i 0.357414i
\(502\) 0 0
\(503\) 10.0000 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) 30.0000i 1.32973i 0.746965 + 0.664863i \(0.231510\pi\)
−0.746965 + 0.664863i \(0.768490\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) −10.0000 −0.441511
\(514\) 0 0
\(515\) − 4.00000i − 0.176261i
\(516\) 0 0
\(517\) 18.0000i 0.791639i
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 0 0
\(521\) 1.00000 0.0438108 0.0219054 0.999760i \(-0.493027\pi\)
0.0219054 + 0.999760i \(0.493027\pi\)
\(522\) 0 0
\(523\) − 4.00000i − 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) 0 0
\(525\) − 12.0000i − 0.523723i
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) −11.0000 −0.474685
\(538\) 0 0
\(539\) 4.00000i 0.172292i
\(540\) 0 0
\(541\) − 17.0000i − 0.730887i −0.930834 0.365444i \(-0.880917\pi\)
0.930834 0.365444i \(-0.119083\pi\)
\(542\) 0 0
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) −19.0000 −0.813871
\(546\) 0 0
\(547\) − 17.0000i − 0.726868i −0.931620 0.363434i \(-0.881604\pi\)
0.931620 0.363434i \(-0.118396\pi\)
\(548\) 0 0
\(549\) − 8.00000i − 0.341432i
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) 24.0000 1.02058
\(554\) 0 0
\(555\) 5.00000i 0.212238i
\(556\) 0 0
\(557\) 7.00000i 0.296600i 0.988942 + 0.148300i \(0.0473800\pi\)
−0.988942 + 0.148300i \(0.952620\pi\)
\(558\) 0 0
\(559\) −7.00000 −0.296068
\(560\) 0 0
\(561\) −6.00000 −0.253320
\(562\) 0 0
\(563\) − 39.0000i − 1.64365i −0.569737 0.821827i \(-0.692955\pi\)
0.569737 0.821827i \(-0.307045\pi\)
\(564\) 0 0
\(565\) 6.00000i 0.252422i
\(566\) 0 0
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) 29.0000i 1.21361i 0.794850 + 0.606806i \(0.207550\pi\)
−0.794850 + 0.606806i \(0.792450\pi\)
\(572\) 0 0
\(573\) 18.0000i 0.751961i
\(574\) 0 0
\(575\) 16.0000 0.667246
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) − 12.0000i − 0.498703i
\(580\) 0 0
\(581\) 12.0000i 0.497844i
\(582\) 0 0
\(583\) 8.00000 0.331326
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) 20.0000i 0.825488i 0.910847 + 0.412744i \(0.135430\pi\)
−0.910847 + 0.412744i \(0.864570\pi\)
\(588\) 0 0
\(589\) 8.00000i 0.329634i
\(590\) 0 0
\(591\) −15.0000 −0.617018
\(592\) 0 0
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) 9.00000i 0.368964i
\(596\) 0 0
\(597\) − 26.0000i − 1.06411i
\(598\) 0 0
\(599\) 42.0000 1.71607 0.858037 0.513588i \(-0.171684\pi\)
0.858037 + 0.513588i \(0.171684\pi\)
\(600\) 0 0
\(601\) −21.0000 −0.856608 −0.428304 0.903635i \(-0.640889\pi\)
−0.428304 + 0.903635i \(0.640889\pi\)
\(602\) 0 0
\(603\) 20.0000i 0.814463i
\(604\) 0 0
\(605\) − 7.00000i − 0.284590i
\(606\) 0 0
\(607\) 38.0000 1.54237 0.771186 0.636610i \(-0.219664\pi\)
0.771186 + 0.636610i \(0.219664\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 9.00000i 0.364101i
\(612\) 0 0
\(613\) − 22.0000i − 0.888572i −0.895885 0.444286i \(-0.853457\pi\)
0.895885 0.444286i \(-0.146543\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) −8.00000 −0.322068 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) − 20.0000i − 0.802572i
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) − 4.00000i − 0.159745i
\(628\) 0 0
\(629\) 15.0000i 0.598089i
\(630\) 0 0
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) 0 0
\(633\) −27.0000 −1.07315
\(634\) 0 0
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) −30.0000 −1.18678
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 2.00000i 0.0788723i 0.999222 + 0.0394362i \(0.0125562\pi\)
−0.999222 + 0.0394362i \(0.987444\pi\)
\(644\) 0 0
\(645\) − 7.00000i − 0.275625i
\(646\) 0 0
\(647\) −26.0000 −1.02217 −0.511083 0.859532i \(-0.670755\pi\)
−0.511083 + 0.859532i \(0.670755\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 12.0000i 0.470317i
\(652\) 0 0
\(653\) 32.0000i 1.25226i 0.779720 + 0.626128i \(0.215361\pi\)
−0.779720 + 0.626128i \(0.784639\pi\)
\(654\) 0 0
\(655\) 21.0000 0.820538
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) − 20.0000i − 0.779089i −0.921008 0.389545i \(-0.872632\pi\)
0.921008 0.389545i \(-0.127368\pi\)
\(660\) 0 0
\(661\) 14.0000i 0.544537i 0.962221 + 0.272268i \(0.0877739\pi\)
−0.962221 + 0.272268i \(0.912226\pi\)
\(662\) 0 0
\(663\) −3.00000 −0.116510
\(664\) 0 0
\(665\) −6.00000 −0.232670
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) 0 0
\(669\) − 15.0000i − 0.579934i
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 13.0000 0.501113 0.250557 0.968102i \(-0.419386\pi\)
0.250557 + 0.968102i \(0.419386\pi\)
\(674\) 0 0
\(675\) − 20.0000i − 0.769800i
\(676\) 0 0
\(677\) 40.0000i 1.53732i 0.639655 + 0.768662i \(0.279077\pi\)
−0.639655 + 0.768662i \(0.720923\pi\)
\(678\) 0 0
\(679\) 30.0000 1.15129
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) − 16.0000i − 0.612223i −0.951996 0.306111i \(-0.900972\pi\)
0.951996 0.306111i \(-0.0990280\pi\)
\(684\) 0 0
\(685\) − 4.00000i − 0.152832i
\(686\) 0 0
\(687\) 9.00000 0.343371
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 32.0000i 1.21734i 0.793424 + 0.608669i \(0.208296\pi\)
−0.793424 + 0.608669i \(0.791704\pi\)
\(692\) 0 0
\(693\) 12.0000i 0.455842i
\(694\) 0 0
\(695\) 19.0000 0.720711
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) − 27.0000i − 1.02123i
\(700\) 0 0
\(701\) 20.0000i 0.755390i 0.925930 + 0.377695i \(0.123283\pi\)
−0.925930 + 0.377695i \(0.876717\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) −9.00000 −0.338960
\(706\) 0 0
\(707\) − 12.0000i − 0.451306i
\(708\) 0 0
\(709\) 30.0000i 1.12667i 0.826227 + 0.563337i \(0.190483\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 2.00000i 0.0747958i
\(716\) 0 0
\(717\) 27.0000i 1.00833i
\(718\) 0 0
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) − 22.0000i − 0.818189i
\(724\) 0 0
\(725\) 8.00000i 0.297113i
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) − 21.0000i − 0.776713i
\(732\) 0 0
\(733\) − 29.0000i − 1.07114i −0.844491 0.535570i \(-0.820097\pi\)
0.844491 0.535570i \(-0.179903\pi\)
\(734\) 0 0
\(735\) −2.00000 −0.0737711
\(736\) 0 0
\(737\) −20.0000 −0.736709
\(738\) 0 0
\(739\) − 16.0000i − 0.588570i −0.955718 0.294285i \(-0.904919\pi\)
0.955718 0.294285i \(-0.0950814\pi\)
\(740\) 0 0
\(741\) − 2.00000i − 0.0734718i
\(742\) 0 0
\(743\) 51.0000 1.87101 0.935504 0.353315i \(-0.114946\pi\)
0.935504 + 0.353315i \(0.114946\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 8.00000i 0.292705i
\(748\) 0 0
\(749\) − 36.0000i − 1.31541i
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) −8.00000 −0.291536
\(754\) 0 0
\(755\) − 5.00000i − 0.181969i
\(756\) 0 0
\(757\) − 20.0000i − 0.726912i −0.931611 0.363456i \(-0.881597\pi\)
0.931611 0.363456i \(-0.118403\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) 0 0
\(763\) − 57.0000i − 2.06354i
\(764\) 0 0
\(765\) 6.00000i 0.216930i
\(766\) 0 0
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) 8.00000 0.288487 0.144244 0.989542i \(-0.453925\pi\)
0.144244 + 0.989542i \(0.453925\pi\)
\(770\) 0 0
\(771\) 7.00000i 0.252099i
\(772\) 0 0
\(773\) 51.0000i 1.83434i 0.398493 + 0.917171i \(0.369533\pi\)
−0.398493 + 0.917171i \(0.630467\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) 0 0
\(777\) −15.0000 −0.538122
\(778\) 0 0
\(779\) − 24.0000i − 0.859889i
\(780\) 0 0
\(781\) − 30.0000i − 1.07348i
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) 52.0000i 1.85360i 0.375555 + 0.926800i \(0.377452\pi\)
−0.375555 + 0.926800i \(0.622548\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) 4.00000i 0.141865i
\(796\) 0 0
\(797\) 54.0000i 1.91278i 0.292096 + 0.956389i \(0.405647\pi\)
−0.292096 + 0.956389i \(0.594353\pi\)
\(798\) 0 0
\(799\) −27.0000 −0.955191
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\) 4.00000i 0.141157i
\(804\) 0 0
\(805\) − 12.0000i − 0.422944i
\(806\) 0 0
\(807\) −4.00000 −0.140807
\(808\) 0 0
\(809\) −47.0000 −1.65243 −0.826216 0.563353i \(-0.809511\pi\)
−0.826216 + 0.563353i \(0.809511\pi\)
\(810\) 0 0
\(811\) − 4.00000i − 0.140459i −0.997531 0.0702295i \(-0.977627\pi\)
0.997531 0.0702295i \(-0.0223732\pi\)
\(812\) 0 0
\(813\) 15.0000i 0.526073i
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 14.0000 0.489798
\(818\) 0 0
\(819\) 6.00000i 0.209657i
\(820\) 0 0
\(821\) 15.0000i 0.523504i 0.965135 + 0.261752i \(0.0843002\pi\)
−0.965135 + 0.261752i \(0.915700\pi\)
\(822\) 0 0
\(823\) −46.0000 −1.60346 −0.801730 0.597687i \(-0.796087\pi\)
−0.801730 + 0.597687i \(0.796087\pi\)
\(824\) 0 0
\(825\) 8.00000 0.278524
\(826\) 0 0
\(827\) 18.0000i 0.625921i 0.949766 + 0.312961i \(0.101321\pi\)
−0.949766 + 0.312961i \(0.898679\pi\)
\(828\) 0 0
\(829\) 14.0000i 0.486240i 0.969996 + 0.243120i \(0.0781709\pi\)
−0.969996 + 0.243120i \(0.921829\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 8.00000i 0.276851i
\(836\) 0 0
\(837\) 20.0000i 0.691301i
\(838\) 0 0
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) 1.00000i 0.0344010i
\(846\) 0 0
\(847\) 21.0000 0.721569
\(848\) 0 0
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) − 20.0000i − 0.685591i
\(852\) 0 0
\(853\) 9.00000i 0.308154i 0.988059 + 0.154077i \(0.0492404\pi\)
−0.988059 + 0.154077i \(0.950760\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) 4.00000i 0.136478i 0.997669 + 0.0682391i \(0.0217381\pi\)
−0.997669 + 0.0682391i \(0.978262\pi\)
\(860\) 0 0
\(861\) − 36.0000i − 1.22688i
\(862\) 0 0
\(863\) 9.00000 0.306364 0.153182 0.988198i \(-0.451048\pi\)
0.153182 + 0.988198i \(0.451048\pi\)
\(864\) 0 0
\(865\) 16.0000 0.544016
\(866\) 0 0
\(867\) 8.00000i 0.271694i
\(868\) 0 0
\(869\) 16.0000i 0.542763i
\(870\) 0 0
\(871\) −10.0000 −0.338837
\(872\) 0 0
\(873\) 20.0000 0.676897
\(874\) 0 0
\(875\) − 27.0000i − 0.912767i
\(876\) 0 0
\(877\) 23.0000i 0.776655i 0.921521 + 0.388327i \(0.126947\pi\)
−0.921521 + 0.388327i \(0.873053\pi\)
\(878\) 0 0
\(879\) 7.00000 0.236104
\(880\) 0 0
\(881\) −35.0000 −1.17918 −0.589590 0.807703i \(-0.700711\pi\)
−0.589590 + 0.807703i \(0.700711\pi\)
\(882\) 0 0
\(883\) 11.0000i 0.370179i 0.982722 + 0.185090i \(0.0592576\pi\)
−0.982722 + 0.185090i \(0.940742\pi\)
\(884\) 0 0
\(885\) − 6.00000i − 0.201688i
\(886\) 0 0
\(887\) 20.0000 0.671534 0.335767 0.941945i \(-0.391004\pi\)
0.335767 + 0.941945i \(0.391004\pi\)
\(888\) 0 0
\(889\) −48.0000 −1.60987
\(890\) 0 0
\(891\) 2.00000i 0.0670025i
\(892\) 0 0
\(893\) − 18.0000i − 0.602347i
\(894\) 0 0
\(895\) −11.0000 −0.367689
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) − 8.00000i − 0.266815i
\(900\) 0 0
\(901\) 12.0000i 0.399778i
\(902\) 0 0
\(903\) 21.0000 0.698836
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) 0 0
\(907\) − 5.00000i − 0.166022i −0.996549 0.0830111i \(-0.973546\pi\)
0.996549 0.0830111i \(-0.0264537\pi\)
\(908\) 0 0
\(909\) − 8.00000i − 0.265343i
\(910\) 0 0
\(911\) −26.0000 −0.861418 −0.430709 0.902491i \(-0.641737\pi\)
−0.430709 + 0.902491i \(0.641737\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 4.00000i 0.132236i
\(916\) 0 0
\(917\) 63.0000i 2.08044i
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 26.0000 0.856729
\(922\) 0 0
\(923\) − 15.0000i − 0.493731i
\(924\) 0 0
\(925\) − 20.0000i − 0.657596i
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) − 4.00000i − 0.131095i
\(932\) 0 0
\(933\) − 2.00000i − 0.0654771i
\(934\) 0 0
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 23.0000i 0.750577i
\(940\) 0 0
\(941\) − 1.00000i − 0.0325991i −0.999867 0.0162995i \(-0.994811\pi\)
0.999867 0.0162995i \(-0.00518853\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) 0 0
\(945\) −15.0000 −0.487950
\(946\) 0 0
\(947\) 46.0000i 1.49480i 0.664375 + 0.747400i \(0.268698\pi\)
−0.664375 + 0.747400i \(0.731302\pi\)
\(948\) 0 0
\(949\) 2.00000i 0.0649227i
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 33.0000 1.06897 0.534487 0.845176i \(-0.320505\pi\)
0.534487 + 0.845176i \(0.320505\pi\)
\(954\) 0 0
\(955\) 18.0000i 0.582466i
\(956\) 0 0
\(957\) 4.00000i 0.129302i
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) − 24.0000i − 0.773389i
\(964\) 0 0
\(965\) − 12.0000i − 0.386294i
\(966\) 0 0
\(967\) −43.0000 −1.38279 −0.691393 0.722478i \(-0.743003\pi\)
−0.691393 + 0.722478i \(0.743003\pi\)
\(968\) 0 0
\(969\) 6.00000 0.192748
\(970\) 0 0
\(971\) − 51.0000i − 1.63667i −0.574743 0.818334i \(-0.694898\pi\)
0.574743 0.818334i \(-0.305102\pi\)
\(972\) 0 0
\(973\) 57.0000i 1.82734i
\(974\) 0 0
\(975\) 4.00000 0.128103
\(976\) 0 0
\(977\) −14.0000 −0.447900 −0.223950 0.974601i \(-0.571895\pi\)
−0.223950 + 0.974601i \(0.571895\pi\)
\(978\) 0 0
\(979\) − 4.00000i − 0.127841i
\(980\) 0 0
\(981\) − 38.0000i − 1.21325i
\(982\) 0 0
\(983\) 27.0000 0.861166 0.430583 0.902551i \(-0.358308\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(984\) 0 0
\(985\) −15.0000 −0.477940
\(986\) 0 0
\(987\) − 27.0000i − 0.859419i
\(988\) 0 0
\(989\) 28.0000i 0.890348i
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) − 26.0000i − 0.824255i
\(996\) 0 0
\(997\) 10.0000i 0.316703i 0.987383 + 0.158352i \(0.0506179\pi\)
−0.987383 + 0.158352i \(0.949382\pi\)
\(998\) 0 0
\(999\) −25.0000 −0.790965
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.b.r.1665.1 2
4.3 odd 2 3328.2.b.c.1665.2 2
8.3 odd 2 3328.2.b.c.1665.1 2
8.5 even 2 inner 3328.2.b.r.1665.2 2
16.3 odd 4 832.2.a.b.1.1 1
16.5 even 4 416.2.a.a.1.1 1
16.11 odd 4 416.2.a.b.1.1 yes 1
16.13 even 4 832.2.a.g.1.1 1
48.5 odd 4 3744.2.a.e.1.1 1
48.11 even 4 3744.2.a.f.1.1 1
48.29 odd 4 7488.2.a.bi.1.1 1
48.35 even 4 7488.2.a.bj.1.1 1
208.155 odd 4 5408.2.a.i.1.1 1
208.181 even 4 5408.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.a.1.1 1 16.5 even 4
416.2.a.b.1.1 yes 1 16.11 odd 4
832.2.a.b.1.1 1 16.3 odd 4
832.2.a.g.1.1 1 16.13 even 4
3328.2.b.c.1665.1 2 8.3 odd 2
3328.2.b.c.1665.2 2 4.3 odd 2
3328.2.b.r.1665.1 2 1.1 even 1 trivial
3328.2.b.r.1665.2 2 8.5 even 2 inner
3744.2.a.e.1.1 1 48.5 odd 4
3744.2.a.f.1.1 1 48.11 even 4
5408.2.a.e.1.1 1 208.181 even 4
5408.2.a.i.1.1 1 208.155 odd 4
7488.2.a.bi.1.1 1 48.29 odd 4
7488.2.a.bj.1.1 1 48.35 even 4