Properties

Label 3328.2.b.bb.1665.8
Level $3328$
Weight $2$
Character 3328.1665
Analytic conductor $26.574$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1665,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1665");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.11574317056.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 45x^{4} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1665.8
Root \(1.83051 + 1.83051i\) of defining polynomial
Character \(\chi\) \(=\) 3328.1665
Dual form 3328.2.b.bb.1665.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.11473i q^{3} +3.70156i q^{5} -4.20732 q^{7} -6.70156 q^{9} +1.09259i q^{11} +1.00000i q^{13} -11.5294 q^{15} +0.298438 q^{17} +1.09259i q^{19} -13.1047i q^{21} -8.70156 q^{25} -11.5294i q^{27} -2.00000i q^{29} -5.13688 q^{31} -3.40312 q^{33} -15.5737i q^{35} +3.70156i q^{37} -3.11473 q^{39} +9.40312 q^{41} +5.29991i q^{43} -24.8062i q^{45} +4.20732 q^{47} +10.7016 q^{49} +0.929554i q^{51} -1.40312i q^{53} -4.04429 q^{55} -3.40312 q^{57} +13.5515i q^{59} +9.40312i q^{61} +28.1956 q^{63} -3.70156 q^{65} -11.3663i q^{67} -8.25161 q^{71} +6.00000 q^{73} -27.1030i q^{75} -4.59688i q^{77} -14.6441 q^{79} +15.8062 q^{81} +7.32206i q^{83} +1.10469i q^{85} +6.22947 q^{87} +6.00000 q^{89} -4.20732i q^{91} -16.0000i q^{93} -4.04429 q^{95} +8.80625 q^{97} -7.32206i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 28 q^{9} + 28 q^{17} - 44 q^{25} + 24 q^{33} + 24 q^{41} + 60 q^{49} + 24 q^{57} - 4 q^{65} + 48 q^{73} + 24 q^{81} + 48 q^{89} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.11473i 1.79829i 0.437649 + 0.899146i \(0.355811\pi\)
−0.437649 + 0.899146i \(0.644189\pi\)
\(4\) 0 0
\(5\) 3.70156i 1.65539i 0.561179 + 0.827694i \(0.310348\pi\)
−0.561179 + 0.827694i \(0.689652\pi\)
\(6\) 0 0
\(7\) −4.20732 −1.59022 −0.795109 0.606466i \(-0.792587\pi\)
−0.795109 + 0.606466i \(0.792587\pi\)
\(8\) 0 0
\(9\) −6.70156 −2.23385
\(10\) 0 0
\(11\) 1.09259i 0.329428i 0.986341 + 0.164714i \(0.0526701\pi\)
−0.986341 + 0.164714i \(0.947330\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −11.5294 −2.97687
\(16\) 0 0
\(17\) 0.298438 0.0723818 0.0361909 0.999345i \(-0.488478\pi\)
0.0361909 + 0.999345i \(0.488478\pi\)
\(18\) 0 0
\(19\) 1.09259i 0.250657i 0.992115 + 0.125329i \(0.0399985\pi\)
−0.992115 + 0.125329i \(0.960001\pi\)
\(20\) 0 0
\(21\) − 13.1047i − 2.85968i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −8.70156 −1.74031
\(26\) 0 0
\(27\) − 11.5294i − 2.21883i
\(28\) 0 0
\(29\) − 2.00000i − 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) −5.13688 −0.922610 −0.461305 0.887242i \(-0.652619\pi\)
−0.461305 + 0.887242i \(0.652619\pi\)
\(32\) 0 0
\(33\) −3.40312 −0.592408
\(34\) 0 0
\(35\) − 15.5737i − 2.63243i
\(36\) 0 0
\(37\) 3.70156i 0.608533i 0.952587 + 0.304267i \(0.0984113\pi\)
−0.952587 + 0.304267i \(0.901589\pi\)
\(38\) 0 0
\(39\) −3.11473 −0.498756
\(40\) 0 0
\(41\) 9.40312 1.46852 0.734261 0.678868i \(-0.237529\pi\)
0.734261 + 0.678868i \(0.237529\pi\)
\(42\) 0 0
\(43\) 5.29991i 0.808229i 0.914708 + 0.404114i \(0.132420\pi\)
−0.914708 + 0.404114i \(0.867580\pi\)
\(44\) 0 0
\(45\) − 24.8062i − 3.69790i
\(46\) 0 0
\(47\) 4.20732 0.613701 0.306851 0.951758i \(-0.400725\pi\)
0.306851 + 0.951758i \(0.400725\pi\)
\(48\) 0 0
\(49\) 10.7016 1.52879
\(50\) 0 0
\(51\) 0.929554i 0.130164i
\(52\) 0 0
\(53\) − 1.40312i − 0.192734i −0.995346 0.0963670i \(-0.969278\pi\)
0.995346 0.0963670i \(-0.0307222\pi\)
\(54\) 0 0
\(55\) −4.04429 −0.545332
\(56\) 0 0
\(57\) −3.40312 −0.450755
\(58\) 0 0
\(59\) 13.5515i 1.76426i 0.471008 + 0.882129i \(0.343890\pi\)
−0.471008 + 0.882129i \(0.656110\pi\)
\(60\) 0 0
\(61\) 9.40312i 1.20395i 0.798516 + 0.601973i \(0.205619\pi\)
−0.798516 + 0.601973i \(0.794381\pi\)
\(62\) 0 0
\(63\) 28.1956 3.55232
\(64\) 0 0
\(65\) −3.70156 −0.459122
\(66\) 0 0
\(67\) − 11.3663i − 1.38862i −0.719676 0.694310i \(-0.755710\pi\)
0.719676 0.694310i \(-0.244290\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.25161 −0.979286 −0.489643 0.871923i \(-0.662873\pi\)
−0.489643 + 0.871923i \(0.662873\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) − 27.1030i − 3.12959i
\(76\) 0 0
\(77\) − 4.59688i − 0.523863i
\(78\) 0 0
\(79\) −14.6441 −1.64759 −0.823796 0.566887i \(-0.808148\pi\)
−0.823796 + 0.566887i \(0.808148\pi\)
\(80\) 0 0
\(81\) 15.8062 1.75625
\(82\) 0 0
\(83\) 7.32206i 0.803700i 0.915706 + 0.401850i \(0.131633\pi\)
−0.915706 + 0.401850i \(0.868367\pi\)
\(84\) 0 0
\(85\) 1.10469i 0.119820i
\(86\) 0 0
\(87\) 6.22947 0.667869
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) − 4.20732i − 0.441047i
\(92\) 0 0
\(93\) − 16.0000i − 1.65912i
\(94\) 0 0
\(95\) −4.04429 −0.414935
\(96\) 0 0
\(97\) 8.80625 0.894139 0.447070 0.894499i \(-0.352468\pi\)
0.447070 + 0.894499i \(0.352468\pi\)
\(98\) 0 0
\(99\) − 7.32206i − 0.735894i
\(100\) 0 0
\(101\) 5.40312i 0.537631i 0.963192 + 0.268815i \(0.0866322\pi\)
−0.963192 + 0.268815i \(0.913368\pi\)
\(102\) 0 0
\(103\) −12.4589 −1.22762 −0.613808 0.789456i \(-0.710363\pi\)
−0.613808 + 0.789456i \(0.710363\pi\)
\(104\) 0 0
\(105\) 48.5078 4.73388
\(106\) 0 0
\(107\) − 14.6441i − 1.41570i −0.706363 0.707850i \(-0.749665\pi\)
0.706363 0.707850i \(-0.250335\pi\)
\(108\) 0 0
\(109\) 4.29844i 0.411716i 0.978582 + 0.205858i \(0.0659984\pi\)
−0.978582 + 0.205858i \(0.934002\pi\)
\(110\) 0 0
\(111\) −11.5294 −1.09432
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 6.70156i − 0.619560i
\(118\) 0 0
\(119\) −1.25562 −0.115103
\(120\) 0 0
\(121\) 9.80625 0.891477
\(122\) 0 0
\(123\) 29.2882i 2.64083i
\(124\) 0 0
\(125\) − 13.7016i − 1.22550i
\(126\) 0 0
\(127\) −16.8293 −1.49336 −0.746679 0.665185i \(-0.768353\pi\)
−0.746679 + 0.665185i \(0.768353\pi\)
\(128\) 0 0
\(129\) −16.5078 −1.45343
\(130\) 0 0
\(131\) − 7.48509i − 0.653975i −0.945029 0.326988i \(-0.893966\pi\)
0.945029 0.326988i \(-0.106034\pi\)
\(132\) 0 0
\(133\) − 4.59688i − 0.398600i
\(134\) 0 0
\(135\) 42.6767 3.67303
\(136\) 0 0
\(137\) −20.2094 −1.72660 −0.863302 0.504688i \(-0.831607\pi\)
−0.863302 + 0.504688i \(0.831607\pi\)
\(138\) 0 0
\(139\) 15.5737i 1.32094i 0.750852 + 0.660471i \(0.229643\pi\)
−0.750852 + 0.660471i \(0.770357\pi\)
\(140\) 0 0
\(141\) 13.1047i 1.10361i
\(142\) 0 0
\(143\) −1.09259 −0.0913669
\(144\) 0 0
\(145\) 7.40312 0.614796
\(146\) 0 0
\(147\) 33.3325i 2.74922i
\(148\) 0 0
\(149\) − 12.8062i − 1.04913i −0.851371 0.524564i \(-0.824228\pi\)
0.851371 0.524564i \(-0.175772\pi\)
\(150\) 0 0
\(151\) 2.02214 0.164560 0.0822799 0.996609i \(-0.473780\pi\)
0.0822799 + 0.996609i \(0.473780\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) − 19.0145i − 1.52728i
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 4.37036 0.346592
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.50723i 0.744664i 0.928100 + 0.372332i \(0.121442\pi\)
−0.928100 + 0.372332i \(0.878558\pi\)
\(164\) 0 0
\(165\) − 12.5969i − 0.980665i
\(166\) 0 0
\(167\) 11.6924 0.904786 0.452393 0.891819i \(-0.350570\pi\)
0.452393 + 0.891819i \(0.350570\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 7.32206i − 0.559932i
\(172\) 0 0
\(173\) 9.40312i 0.714906i 0.933931 + 0.357453i \(0.116355\pi\)
−0.933931 + 0.357453i \(0.883645\pi\)
\(174\) 0 0
\(175\) 36.6103 2.76748
\(176\) 0 0
\(177\) −42.2094 −3.17265
\(178\) 0 0
\(179\) − 5.29991i − 0.396134i −0.980188 0.198067i \(-0.936534\pi\)
0.980188 0.198067i \(-0.0634664\pi\)
\(180\) 0 0
\(181\) − 2.59688i − 0.193024i −0.995332 0.0965121i \(-0.969231\pi\)
0.995332 0.0965121i \(-0.0307687\pi\)
\(182\) 0 0
\(183\) −29.2882 −2.16505
\(184\) 0 0
\(185\) −13.7016 −1.00736
\(186\) 0 0
\(187\) 0.326070i 0.0238446i
\(188\) 0 0
\(189\) 48.5078i 3.52842i
\(190\) 0 0
\(191\) 4.04429 0.292634 0.146317 0.989238i \(-0.453258\pi\)
0.146317 + 0.989238i \(0.453258\pi\)
\(192\) 0 0
\(193\) 21.4031 1.54063 0.770315 0.637663i \(-0.220099\pi\)
0.770315 + 0.637663i \(0.220099\pi\)
\(194\) 0 0
\(195\) − 11.5294i − 0.825636i
\(196\) 0 0
\(197\) 16.2984i 1.16122i 0.814183 + 0.580608i \(0.197185\pi\)
−0.814183 + 0.580608i \(0.802815\pi\)
\(198\) 0 0
\(199\) 18.6884 1.32479 0.662393 0.749157i \(-0.269541\pi\)
0.662393 + 0.749157i \(0.269541\pi\)
\(200\) 0 0
\(201\) 35.4031 2.49714
\(202\) 0 0
\(203\) 8.41464i 0.590592i
\(204\) 0 0
\(205\) 34.8062i 2.43097i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.19375 −0.0825735
\(210\) 0 0
\(211\) 21.8031i 1.50099i 0.660876 + 0.750495i \(0.270185\pi\)
−0.660876 + 0.750495i \(0.729815\pi\)
\(212\) 0 0
\(213\) − 25.7016i − 1.76104i
\(214\) 0 0
\(215\) −19.6180 −1.33793
\(216\) 0 0
\(217\) 21.6125 1.46715
\(218\) 0 0
\(219\) 18.6884i 1.26284i
\(220\) 0 0
\(221\) 0.298438i 0.0200751i
\(222\) 0 0
\(223\) 20.7105 1.38688 0.693440 0.720514i \(-0.256094\pi\)
0.693440 + 0.720514i \(0.256094\pi\)
\(224\) 0 0
\(225\) 58.3141 3.88760
\(226\) 0 0
\(227\) − 5.13688i − 0.340946i −0.985362 0.170473i \(-0.945470\pi\)
0.985362 0.170473i \(-0.0545296\pi\)
\(228\) 0 0
\(229\) − 8.89531i − 0.587819i −0.955833 0.293909i \(-0.905044\pi\)
0.955833 0.293909i \(-0.0949564\pi\)
\(230\) 0 0
\(231\) 14.3180 0.942058
\(232\) 0 0
\(233\) −23.1047 −1.51364 −0.756819 0.653624i \(-0.773248\pi\)
−0.756819 + 0.653624i \(0.773248\pi\)
\(234\) 0 0
\(235\) 15.5737i 1.01591i
\(236\) 0 0
\(237\) − 45.6125i − 2.96285i
\(238\) 0 0
\(239\) 14.4811 0.936703 0.468351 0.883542i \(-0.344848\pi\)
0.468351 + 0.883542i \(0.344848\pi\)
\(240\) 0 0
\(241\) −4.80625 −0.309598 −0.154799 0.987946i \(-0.549473\pi\)
−0.154799 + 0.987946i \(0.549473\pi\)
\(242\) 0 0
\(243\) 14.6441i 0.939420i
\(244\) 0 0
\(245\) 39.6125i 2.53075i
\(246\) 0 0
\(247\) −1.09259 −0.0695198
\(248\) 0 0
\(249\) −22.8062 −1.44529
\(250\) 0 0
\(251\) − 16.8293i − 1.06226i −0.847292 0.531128i \(-0.821768\pi\)
0.847292 0.531128i \(-0.178232\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.44080 −0.215471
\(256\) 0 0
\(257\) −14.5078 −0.904972 −0.452486 0.891771i \(-0.649463\pi\)
−0.452486 + 0.891771i \(0.649463\pi\)
\(258\) 0 0
\(259\) − 15.5737i − 0.967700i
\(260\) 0 0
\(261\) 13.4031i 0.829633i
\(262\) 0 0
\(263\) 2.18518 0.134744 0.0673719 0.997728i \(-0.478539\pi\)
0.0673719 + 0.997728i \(0.478539\pi\)
\(264\) 0 0
\(265\) 5.19375 0.319050
\(266\) 0 0
\(267\) 18.6884i 1.14371i
\(268\) 0 0
\(269\) − 12.2094i − 0.744419i −0.928149 0.372209i \(-0.878600\pi\)
0.928149 0.372209i \(-0.121400\pi\)
\(270\) 0 0
\(271\) 4.20732 0.255577 0.127788 0.991801i \(-0.459212\pi\)
0.127788 + 0.991801i \(0.459212\pi\)
\(272\) 0 0
\(273\) 13.1047 0.793132
\(274\) 0 0
\(275\) − 9.50723i − 0.573308i
\(276\) 0 0
\(277\) − 24.2094i − 1.45460i −0.686320 0.727300i \(-0.740775\pi\)
0.686320 0.727300i \(-0.259225\pi\)
\(278\) 0 0
\(279\) 34.4251 2.06098
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) − 12.5969i − 0.746175i
\(286\) 0 0
\(287\) −39.5620 −2.33527
\(288\) 0 0
\(289\) −16.9109 −0.994761
\(290\) 0 0
\(291\) 27.4291i 1.60792i
\(292\) 0 0
\(293\) − 19.1047i − 1.11611i −0.829805 0.558054i \(-0.811548\pi\)
0.829805 0.558054i \(-0.188452\pi\)
\(294\) 0 0
\(295\) −50.1618 −2.92053
\(296\) 0 0
\(297\) 12.5969 0.730945
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 22.2984i − 1.28526i
\(302\) 0 0
\(303\) −16.8293 −0.966817
\(304\) 0 0
\(305\) −34.8062 −1.99300
\(306\) 0 0
\(307\) 15.7367i 0.898141i 0.893496 + 0.449070i \(0.148245\pi\)
−0.893496 + 0.449070i \(0.851755\pi\)
\(308\) 0 0
\(309\) − 38.8062i − 2.20761i
\(310\) 0 0
\(311\) 18.6884 1.05972 0.529861 0.848085i \(-0.322244\pi\)
0.529861 + 0.848085i \(0.322244\pi\)
\(312\) 0 0
\(313\) −2.50781 −0.141750 −0.0708749 0.997485i \(-0.522579\pi\)
−0.0708749 + 0.997485i \(0.522579\pi\)
\(314\) 0 0
\(315\) 104.368i 5.88046i
\(316\) 0 0
\(317\) − 24.8062i − 1.39326i −0.717432 0.696629i \(-0.754682\pi\)
0.717432 0.696629i \(-0.245318\pi\)
\(318\) 0 0
\(319\) 2.18518 0.122347
\(320\) 0 0
\(321\) 45.6125 2.54584
\(322\) 0 0
\(323\) 0.326070i 0.0181430i
\(324\) 0 0
\(325\) − 8.70156i − 0.482676i
\(326\) 0 0
\(327\) −13.3885 −0.740385
\(328\) 0 0
\(329\) −17.7016 −0.975919
\(330\) 0 0
\(331\) − 24.1513i − 1.32748i −0.747964 0.663739i \(-0.768969\pi\)
0.747964 0.663739i \(-0.231031\pi\)
\(332\) 0 0
\(333\) − 24.8062i − 1.35937i
\(334\) 0 0
\(335\) 42.0732 2.29871
\(336\) 0 0
\(337\) −3.10469 −0.169123 −0.0845615 0.996418i \(-0.526949\pi\)
−0.0845615 + 0.996418i \(0.526949\pi\)
\(338\) 0 0
\(339\) 31.1473i 1.69169i
\(340\) 0 0
\(341\) − 5.61250i − 0.303934i
\(342\) 0 0
\(343\) −15.5737 −0.840899
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 4.97384i − 0.267010i −0.991048 0.133505i \(-0.957377\pi\)
0.991048 0.133505i \(-0.0426232\pi\)
\(348\) 0 0
\(349\) 33.9109i 1.81521i 0.419824 + 0.907605i \(0.362092\pi\)
−0.419824 + 0.907605i \(0.637908\pi\)
\(350\) 0 0
\(351\) 11.5294 0.615393
\(352\) 0 0
\(353\) 14.5969 0.776913 0.388457 0.921467i \(-0.373008\pi\)
0.388457 + 0.921467i \(0.373008\pi\)
\(354\) 0 0
\(355\) − 30.5438i − 1.62110i
\(356\) 0 0
\(357\) − 3.91093i − 0.206989i
\(358\) 0 0
\(359\) 2.95170 0.155785 0.0778923 0.996962i \(-0.475181\pi\)
0.0778923 + 0.996962i \(0.475181\pi\)
\(360\) 0 0
\(361\) 17.8062 0.937171
\(362\) 0 0
\(363\) 30.5438i 1.60314i
\(364\) 0 0
\(365\) 22.2094i 1.16249i
\(366\) 0 0
\(367\) −28.9622 −1.51181 −0.755906 0.654680i \(-0.772803\pi\)
−0.755906 + 0.654680i \(0.772803\pi\)
\(368\) 0 0
\(369\) −63.0156 −3.28046
\(370\) 0 0
\(371\) 5.90340i 0.306489i
\(372\) 0 0
\(373\) − 16.2094i − 0.839290i −0.907688 0.419645i \(-0.862155\pi\)
0.907688 0.419645i \(-0.137845\pi\)
\(374\) 0 0
\(375\) 42.6767 2.20382
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) − 27.8696i − 1.43156i −0.698324 0.715782i \(-0.746071\pi\)
0.698324 0.715782i \(-0.253929\pi\)
\(380\) 0 0
\(381\) − 52.4187i − 2.68549i
\(382\) 0 0
\(383\) −8.57768 −0.438299 −0.219149 0.975691i \(-0.570328\pi\)
−0.219149 + 0.975691i \(0.570328\pi\)
\(384\) 0 0
\(385\) 17.0156 0.867196
\(386\) 0 0
\(387\) − 35.5177i − 1.80547i
\(388\) 0 0
\(389\) 32.8062i 1.66334i 0.555268 + 0.831671i \(0.312616\pi\)
−0.555268 + 0.831671i \(0.687384\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 23.3141 1.17604
\(394\) 0 0
\(395\) − 54.2061i − 2.72740i
\(396\) 0 0
\(397\) − 2.00000i − 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 14.3180 0.716799
\(400\) 0 0
\(401\) −24.2094 −1.20896 −0.604479 0.796621i \(-0.706619\pi\)
−0.604479 + 0.796621i \(0.706619\pi\)
\(402\) 0 0
\(403\) − 5.13688i − 0.255886i
\(404\) 0 0
\(405\) 58.5078i 2.90728i
\(406\) 0 0
\(407\) −4.04429 −0.200468
\(408\) 0 0
\(409\) 9.40312 0.464955 0.232477 0.972602i \(-0.425317\pi\)
0.232477 + 0.972602i \(0.425317\pi\)
\(410\) 0 0
\(411\) − 62.9468i − 3.10494i
\(412\) 0 0
\(413\) − 57.0156i − 2.80556i
\(414\) 0 0
\(415\) −27.1030 −1.33044
\(416\) 0 0
\(417\) −48.5078 −2.37544
\(418\) 0 0
\(419\) 32.4030i 1.58299i 0.611177 + 0.791494i \(0.290696\pi\)
−0.611177 + 0.791494i \(0.709304\pi\)
\(420\) 0 0
\(421\) − 19.1047i − 0.931105i −0.885020 0.465553i \(-0.845856\pi\)
0.885020 0.465553i \(-0.154144\pi\)
\(422\) 0 0
\(423\) −28.1956 −1.37092
\(424\) 0 0
\(425\) −2.59688 −0.125967
\(426\) 0 0
\(427\) − 39.5620i − 1.91454i
\(428\) 0 0
\(429\) − 3.40312i − 0.164304i
\(430\) 0 0
\(431\) 18.8514 0.908042 0.454021 0.890991i \(-0.349989\pi\)
0.454021 + 0.890991i \(0.349989\pi\)
\(432\) 0 0
\(433\) 4.89531 0.235254 0.117627 0.993058i \(-0.462471\pi\)
0.117627 + 0.993058i \(0.462471\pi\)
\(434\) 0 0
\(435\) 23.0588i 1.10558i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 27.4291 1.30912 0.654560 0.756010i \(-0.272854\pi\)
0.654560 + 0.756010i \(0.272854\pi\)
\(440\) 0 0
\(441\) −71.7172 −3.41510
\(442\) 0 0
\(443\) − 11.8554i − 0.563269i −0.959522 0.281635i \(-0.909123\pi\)
0.959522 0.281635i \(-0.0908766\pi\)
\(444\) 0 0
\(445\) 22.2094i 1.05283i
\(446\) 0 0
\(447\) 39.8880 1.88664
\(448\) 0 0
\(449\) 24.8062 1.17068 0.585340 0.810788i \(-0.300961\pi\)
0.585340 + 0.810788i \(0.300961\pi\)
\(450\) 0 0
\(451\) 10.2738i 0.483772i
\(452\) 0 0
\(453\) 6.29844i 0.295926i
\(454\) 0 0
\(455\) 15.5737 0.730105
\(456\) 0 0
\(457\) −0.806248 −0.0377147 −0.0188574 0.999822i \(-0.506003\pi\)
−0.0188574 + 0.999822i \(0.506003\pi\)
\(458\) 0 0
\(459\) − 3.44080i − 0.160603i
\(460\) 0 0
\(461\) − 11.7016i − 0.544996i −0.962156 0.272498i \(-0.912150\pi\)
0.962156 0.272498i \(-0.0878498\pi\)
\(462\) 0 0
\(463\) −32.2399 −1.49832 −0.749158 0.662391i \(-0.769542\pi\)
−0.749158 + 0.662391i \(0.769542\pi\)
\(464\) 0 0
\(465\) 59.2250 2.74649
\(466\) 0 0
\(467\) − 29.2882i − 1.35530i −0.735386 0.677649i \(-0.762999\pi\)
0.735386 0.677649i \(-0.237001\pi\)
\(468\) 0 0
\(469\) 47.8219i 2.20821i
\(470\) 0 0
\(471\) 6.22947 0.287039
\(472\) 0 0
\(473\) −5.79063 −0.266253
\(474\) 0 0
\(475\) − 9.50723i − 0.436222i
\(476\) 0 0
\(477\) 9.40312i 0.430539i
\(478\) 0 0
\(479\) −25.0809 −1.14598 −0.572988 0.819564i \(-0.694216\pi\)
−0.572988 + 0.819564i \(0.694216\pi\)
\(480\) 0 0
\(481\) −3.70156 −0.168777
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 32.5969i 1.48015i
\(486\) 0 0
\(487\) −2.95170 −0.133754 −0.0668771 0.997761i \(-0.521304\pi\)
−0.0668771 + 0.997761i \(0.521304\pi\)
\(488\) 0 0
\(489\) −29.6125 −1.33912
\(490\) 0 0
\(491\) 34.5881i 1.56094i 0.625193 + 0.780470i \(0.285020\pi\)
−0.625193 + 0.780470i \(0.714980\pi\)
\(492\) 0 0
\(493\) − 0.596876i − 0.0268819i
\(494\) 0 0
\(495\) 27.1030 1.21819
\(496\) 0 0
\(497\) 34.7172 1.55728
\(498\) 0 0
\(499\) − 38.7955i − 1.73672i −0.495932 0.868362i \(-0.665173\pi\)
0.495932 0.868362i \(-0.334827\pi\)
\(500\) 0 0
\(501\) 36.4187i 1.62707i
\(502\) 0 0
\(503\) 8.41464 0.375190 0.187595 0.982246i \(-0.439931\pi\)
0.187595 + 0.982246i \(0.439931\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) − 3.11473i − 0.138330i
\(508\) 0 0
\(509\) 14.0000i 0.620539i 0.950649 + 0.310270i \(0.100419\pi\)
−0.950649 + 0.310270i \(0.899581\pi\)
\(510\) 0 0
\(511\) −25.2439 −1.11673
\(512\) 0 0
\(513\) 12.5969 0.556166
\(514\) 0 0
\(515\) − 46.1175i − 2.03218i
\(516\) 0 0
\(517\) 4.59688i 0.202170i
\(518\) 0 0
\(519\) −29.2882 −1.28561
\(520\) 0 0
\(521\) −18.5078 −0.810842 −0.405421 0.914130i \(-0.632875\pi\)
−0.405421 + 0.914130i \(0.632875\pi\)
\(522\) 0 0
\(523\) − 19.0145i − 0.831445i −0.909492 0.415722i \(-0.863529\pi\)
0.909492 0.415722i \(-0.136471\pi\)
\(524\) 0 0
\(525\) 114.031i 4.97673i
\(526\) 0 0
\(527\) −1.53304 −0.0667802
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) − 90.8164i − 3.94109i
\(532\) 0 0
\(533\) 9.40312i 0.407295i
\(534\) 0 0
\(535\) 54.2061 2.34353
\(536\) 0 0
\(537\) 16.5078 0.712365
\(538\) 0 0
\(539\) 11.6924i 0.503628i
\(540\) 0 0
\(541\) − 8.29844i − 0.356778i −0.983960 0.178389i \(-0.942912\pi\)
0.983960 0.178389i \(-0.0570885\pi\)
\(542\) 0 0
\(543\) 8.08857 0.347114
\(544\) 0 0
\(545\) −15.9109 −0.681550
\(546\) 0 0
\(547\) − 21.8031i − 0.932235i −0.884723 0.466117i \(-0.845652\pi\)
0.884723 0.466117i \(-0.154348\pi\)
\(548\) 0 0
\(549\) − 63.0156i − 2.68944i
\(550\) 0 0
\(551\) 2.18518 0.0930917
\(552\) 0 0
\(553\) 61.6125 2.62003
\(554\) 0 0
\(555\) − 42.6767i − 1.81153i
\(556\) 0 0
\(557\) 7.70156i 0.326326i 0.986599 + 0.163163i \(0.0521696\pi\)
−0.986599 + 0.163163i \(0.947830\pi\)
\(558\) 0 0
\(559\) −5.29991 −0.224162
\(560\) 0 0
\(561\) −1.01562 −0.0428796
\(562\) 0 0
\(563\) − 9.01813i − 0.380069i −0.981777 0.190034i \(-0.939140\pi\)
0.981777 0.190034i \(-0.0608600\pi\)
\(564\) 0 0
\(565\) 37.0156i 1.55726i
\(566\) 0 0
\(567\) −66.5020 −2.79282
\(568\) 0 0
\(569\) −35.7016 −1.49669 −0.748344 0.663311i \(-0.769151\pi\)
−0.748344 + 0.663311i \(0.769151\pi\)
\(570\) 0 0
\(571\) − 5.29991i − 0.221794i −0.993832 0.110897i \(-0.964628\pi\)
0.993832 0.110897i \(-0.0353724\pi\)
\(572\) 0 0
\(573\) 12.5969i 0.526242i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.19375 −0.299480 −0.149740 0.988725i \(-0.547844\pi\)
−0.149740 + 0.988725i \(0.547844\pi\)
\(578\) 0 0
\(579\) 66.6650i 2.77050i
\(580\) 0 0
\(581\) − 30.8062i − 1.27806i
\(582\) 0 0
\(583\) 1.53304 0.0634920
\(584\) 0 0
\(585\) 24.8062 1.02561
\(586\) 0 0
\(587\) 9.50723i 0.392406i 0.980563 + 0.196203i \(0.0628611\pi\)
−0.980563 + 0.196203i \(0.937139\pi\)
\(588\) 0 0
\(589\) − 5.61250i − 0.231259i
\(590\) 0 0
\(591\) −50.7653 −2.08820
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) − 4.64777i − 0.190540i
\(596\) 0 0
\(597\) 58.2094i 2.38235i
\(598\) 0 0
\(599\) −33.3325 −1.36193 −0.680965 0.732316i \(-0.738439\pi\)
−0.680965 + 0.732316i \(0.738439\pi\)
\(600\) 0 0
\(601\) −24.2984 −0.991154 −0.495577 0.868564i \(-0.665043\pi\)
−0.495577 + 0.868564i \(0.665043\pi\)
\(602\) 0 0
\(603\) 76.1723i 3.10197i
\(604\) 0 0
\(605\) 36.2984i 1.47574i
\(606\) 0 0
\(607\) −12.1329 −0.492458 −0.246229 0.969212i \(-0.579191\pi\)
−0.246229 + 0.969212i \(0.579191\pi\)
\(608\) 0 0
\(609\) −26.2094 −1.06206
\(610\) 0 0
\(611\) 4.20732i 0.170210i
\(612\) 0 0
\(613\) 26.0000i 1.05013i 0.851062 + 0.525065i \(0.175959\pi\)
−0.851062 + 0.525065i \(0.824041\pi\)
\(614\) 0 0
\(615\) −108.412 −4.37160
\(616\) 0 0
\(617\) −6.59688 −0.265580 −0.132790 0.991144i \(-0.542394\pi\)
−0.132790 + 0.991144i \(0.542394\pi\)
\(618\) 0 0
\(619\) 36.6103i 1.47149i 0.677258 + 0.735746i \(0.263168\pi\)
−0.677258 + 0.735746i \(0.736832\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.2439 −1.01138
\(624\) 0 0
\(625\) 7.20937 0.288375
\(626\) 0 0
\(627\) − 3.71822i − 0.148491i
\(628\) 0 0
\(629\) 1.10469i 0.0440467i
\(630\) 0 0
\(631\) −1.69607 −0.0675196 −0.0337598 0.999430i \(-0.510748\pi\)
−0.0337598 + 0.999430i \(0.510748\pi\)
\(632\) 0 0
\(633\) −67.9109 −2.69922
\(634\) 0 0
\(635\) − 62.2947i − 2.47209i
\(636\) 0 0
\(637\) 10.7016i 0.424011i
\(638\) 0 0
\(639\) 55.2987 2.18758
\(640\) 0 0
\(641\) 32.8062 1.29577 0.647884 0.761739i \(-0.275654\pi\)
0.647884 + 0.761739i \(0.275654\pi\)
\(642\) 0 0
\(643\) − 20.1071i − 0.792945i −0.918047 0.396472i \(-0.870234\pi\)
0.918047 0.396472i \(-0.129766\pi\)
\(644\) 0 0
\(645\) − 61.1047i − 2.40599i
\(646\) 0 0
\(647\) 18.6884 0.734717 0.367358 0.930079i \(-0.380262\pi\)
0.367358 + 0.930079i \(0.380262\pi\)
\(648\) 0 0
\(649\) −14.8062 −0.581196
\(650\) 0 0
\(651\) 67.3172i 2.63837i
\(652\) 0 0
\(653\) 47.0156i 1.83986i 0.392079 + 0.919932i \(0.371756\pi\)
−0.392079 + 0.919932i \(0.628244\pi\)
\(654\) 0 0
\(655\) 27.7065 1.08258
\(656\) 0 0
\(657\) −40.2094 −1.56872
\(658\) 0 0
\(659\) 19.0145i 0.740699i 0.928893 + 0.370349i \(0.120762\pi\)
−0.928893 + 0.370349i \(0.879238\pi\)
\(660\) 0 0
\(661\) − 28.8062i − 1.12043i −0.828346 0.560217i \(-0.810718\pi\)
0.828346 0.560217i \(-0.189282\pi\)
\(662\) 0 0
\(663\) −0.929554 −0.0361009
\(664\) 0 0
\(665\) 17.0156 0.659837
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 64.5078i 2.49402i
\(670\) 0 0
\(671\) −10.2738 −0.396614
\(672\) 0 0
\(673\) −29.3141 −1.12997 −0.564987 0.825100i \(-0.691119\pi\)
−0.564987 + 0.825100i \(0.691119\pi\)
\(674\) 0 0
\(675\) 100.324i 3.86146i
\(676\) 0 0
\(677\) − 17.4031i − 0.668856i −0.942421 0.334428i \(-0.891457\pi\)
0.942421 0.334428i \(-0.108543\pi\)
\(678\) 0 0
\(679\) −37.0507 −1.42188
\(680\) 0 0
\(681\) 16.0000 0.613121
\(682\) 0 0
\(683\) 49.0692i 1.87758i 0.344488 + 0.938791i \(0.388052\pi\)
−0.344488 + 0.938791i \(0.611948\pi\)
\(684\) 0 0
\(685\) − 74.8062i − 2.85820i
\(686\) 0 0
\(687\) 27.7065 1.05707
\(688\) 0 0
\(689\) 1.40312 0.0534548
\(690\) 0 0
\(691\) 28.5217i 1.08502i 0.840050 + 0.542508i \(0.182525\pi\)
−0.840050 + 0.542508i \(0.817475\pi\)
\(692\) 0 0
\(693\) 30.8062i 1.17023i
\(694\) 0 0
\(695\) −57.6469 −2.18667
\(696\) 0 0
\(697\) 2.80625 0.106294
\(698\) 0 0
\(699\) − 71.9649i − 2.72196i
\(700\) 0 0
\(701\) 17.4031i 0.657307i 0.944451 + 0.328653i \(0.106595\pi\)
−0.944451 + 0.328653i \(0.893405\pi\)
\(702\) 0 0
\(703\) −4.04429 −0.152533
\(704\) 0 0
\(705\) −48.5078 −1.82691
\(706\) 0 0
\(707\) − 22.7327i − 0.854951i
\(708\) 0 0
\(709\) 3.19375i 0.119944i 0.998200 + 0.0599719i \(0.0191011\pi\)
−0.998200 + 0.0599719i \(0.980899\pi\)
\(710\) 0 0
\(711\) 98.1384 3.68048
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) − 4.04429i − 0.151248i
\(716\) 0 0
\(717\) 45.1047i 1.68447i
\(718\) 0 0
\(719\) −31.1473 −1.16160 −0.580800 0.814046i \(-0.697260\pi\)
−0.580800 + 0.814046i \(0.697260\pi\)
\(720\) 0 0
\(721\) 52.4187 1.95218
\(722\) 0 0
\(723\) − 14.9702i − 0.556747i
\(724\) 0 0
\(725\) 17.4031i 0.646336i
\(726\) 0 0
\(727\) −2.51125 −0.0931371 −0.0465685 0.998915i \(-0.514829\pi\)
−0.0465685 + 0.998915i \(0.514829\pi\)
\(728\) 0 0
\(729\) 1.80625 0.0668981
\(730\) 0 0
\(731\) 1.58169i 0.0585011i
\(732\) 0 0
\(733\) − 37.9109i − 1.40027i −0.714009 0.700136i \(-0.753123\pi\)
0.714009 0.700136i \(-0.246877\pi\)
\(734\) 0 0
\(735\) −123.382 −4.55103
\(736\) 0 0
\(737\) 12.4187 0.457450
\(738\) 0 0
\(739\) 17.5958i 0.647272i 0.946182 + 0.323636i \(0.104905\pi\)
−0.946182 + 0.323636i \(0.895095\pi\)
\(740\) 0 0
\(741\) − 3.40312i − 0.125017i
\(742\) 0 0
\(743\) −2.02214 −0.0741853 −0.0370926 0.999312i \(-0.511810\pi\)
−0.0370926 + 0.999312i \(0.511810\pi\)
\(744\) 0 0
\(745\) 47.4031 1.73672
\(746\) 0 0
\(747\) − 49.0692i − 1.79535i
\(748\) 0 0
\(749\) 61.6125i 2.25127i
\(750\) 0 0
\(751\) 49.8357 1.81853 0.909266 0.416216i \(-0.136644\pi\)
0.909266 + 0.416216i \(0.136644\pi\)
\(752\) 0 0
\(753\) 52.4187 1.91025
\(754\) 0 0
\(755\) 7.48509i 0.272410i
\(756\) 0 0
\(757\) 12.2094i 0.443757i 0.975074 + 0.221879i \(0.0712189\pi\)
−0.975074 + 0.221879i \(0.928781\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.6125 −0.855952 −0.427976 0.903790i \(-0.640773\pi\)
−0.427976 + 0.903790i \(0.640773\pi\)
\(762\) 0 0
\(763\) − 18.0849i − 0.654718i
\(764\) 0 0
\(765\) − 7.40312i − 0.267661i
\(766\) 0 0
\(767\) −13.5515 −0.489317
\(768\) 0 0
\(769\) 12.2094 0.440281 0.220141 0.975468i \(-0.429348\pi\)
0.220141 + 0.975468i \(0.429348\pi\)
\(770\) 0 0
\(771\) − 45.1880i − 1.62740i
\(772\) 0 0
\(773\) − 3.10469i − 0.111668i −0.998440 0.0558339i \(-0.982218\pi\)
0.998440 0.0558339i \(-0.0177817\pi\)
\(774\) 0 0
\(775\) 44.6989 1.60563
\(776\) 0 0
\(777\) 48.5078 1.74021
\(778\) 0 0
\(779\) 10.2738i 0.368095i
\(780\) 0 0
\(781\) − 9.01562i − 0.322604i
\(782\) 0 0
\(783\) −23.0588 −0.824053
\(784\) 0 0
\(785\) 7.40312 0.264229
\(786\) 0 0
\(787\) 0.766519i 0.0273235i 0.999907 + 0.0136617i \(0.00434880\pi\)
−0.999907 + 0.0136617i \(0.995651\pi\)
\(788\) 0 0
\(789\) 6.80625i 0.242309i
\(790\) 0 0
\(791\) −42.0732 −1.49595
\(792\) 0 0
\(793\) −9.40312 −0.333915
\(794\) 0 0
\(795\) 16.1771i 0.573744i
\(796\) 0 0
\(797\) − 2.00000i − 0.0708436i −0.999372 0.0354218i \(-0.988723\pi\)
0.999372 0.0354218i \(-0.0112775\pi\)
\(798\) 0 0
\(799\) 1.25562 0.0444208
\(800\) 0 0
\(801\) −40.2094 −1.42073
\(802\) 0 0
\(803\) 6.55554i 0.231340i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 38.0289 1.33868
\(808\) 0 0
\(809\) 27.1047 0.952950 0.476475 0.879188i \(-0.341914\pi\)
0.476475 + 0.879188i \(0.341914\pi\)
\(810\) 0 0
\(811\) − 16.0628i − 0.564040i −0.959409 0.282020i \(-0.908996\pi\)
0.959409 0.282020i \(-0.0910045\pi\)
\(812\) 0 0
\(813\) 13.1047i 0.459601i
\(814\) 0 0
\(815\) −35.1916 −1.23271
\(816\) 0 0
\(817\) −5.79063 −0.202588
\(818\) 0 0
\(819\) 28.1956i 0.985235i
\(820\) 0 0
\(821\) − 25.9109i − 0.904298i −0.891942 0.452149i \(-0.850658\pi\)
0.891942 0.452149i \(-0.149342\pi\)
\(822\) 0 0
\(823\) −31.7995 −1.10846 −0.554230 0.832364i \(-0.686987\pi\)
−0.554230 + 0.832364i \(0.686987\pi\)
\(824\) 0 0
\(825\) 29.6125 1.03097
\(826\) 0 0
\(827\) − 11.3663i − 0.395246i −0.980278 0.197623i \(-0.936678\pi\)
0.980278 0.197623i \(-0.0633223\pi\)
\(828\) 0 0
\(829\) 51.6125i 1.79258i 0.443472 + 0.896288i \(0.353746\pi\)
−0.443472 + 0.896288i \(0.646254\pi\)
\(830\) 0 0
\(831\) 75.4057 2.61580
\(832\) 0 0
\(833\) 3.19375 0.110657
\(834\) 0 0
\(835\) 43.2802i 1.49777i
\(836\) 0 0
\(837\) 59.2250i 2.04712i
\(838\) 0 0
\(839\) 32.2399 1.11305 0.556523 0.830832i \(-0.312135\pi\)
0.556523 + 0.830832i \(0.312135\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) − 31.1473i − 1.07277i
\(844\) 0 0
\(845\) − 3.70156i − 0.127338i
\(846\) 0 0
\(847\) −41.2580 −1.41764
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 23.1047i 0.791089i 0.918447 + 0.395545i \(0.129444\pi\)
−0.918447 + 0.395545i \(0.870556\pi\)
\(854\) 0 0
\(855\) 27.1030 0.926905
\(856\) 0 0
\(857\) 12.8062 0.437453 0.218727 0.975786i \(-0.429810\pi\)
0.218727 + 0.975786i \(0.429810\pi\)
\(858\) 0 0
\(859\) 14.6441i 0.499651i 0.968291 + 0.249825i \(0.0803732\pi\)
−0.968291 + 0.249825i \(0.919627\pi\)
\(860\) 0 0
\(861\) − 123.225i − 4.19950i
\(862\) 0 0
\(863\) −27.2661 −0.928148 −0.464074 0.885796i \(-0.653613\pi\)
−0.464074 + 0.885796i \(0.653613\pi\)
\(864\) 0 0
\(865\) −34.8062 −1.18345
\(866\) 0 0
\(867\) − 52.6730i − 1.78887i
\(868\) 0 0
\(869\) − 16.0000i − 0.542763i
\(870\) 0 0
\(871\) 11.3663 0.385134
\(872\) 0 0
\(873\) −59.0156 −1.99738
\(874\) 0 0
\(875\) 57.6469i 1.94882i
\(876\) 0 0
\(877\) − 44.7172i − 1.50999i −0.655729 0.754996i \(-0.727639\pi\)
0.655729 0.754996i \(-0.272361\pi\)
\(878\) 0 0
\(879\) 59.5060 2.00709
\(880\) 0 0
\(881\) −55.7016 −1.87663 −0.938317 0.345777i \(-0.887615\pi\)
−0.938317 + 0.345777i \(0.887615\pi\)
\(882\) 0 0
\(883\) − 40.8176i − 1.37362i −0.726836 0.686811i \(-0.759010\pi\)
0.726836 0.686811i \(-0.240990\pi\)
\(884\) 0 0
\(885\) − 156.241i − 5.25197i
\(886\) 0 0
\(887\) −19.0145 −0.638443 −0.319222 0.947680i \(-0.603421\pi\)
−0.319222 + 0.947680i \(0.603421\pi\)
\(888\) 0 0
\(889\) 70.8062 2.37477
\(890\) 0 0
\(891\) 17.2697i 0.578558i
\(892\) 0 0
\(893\) 4.59688i 0.153829i
\(894\) 0 0
\(895\) 19.6180 0.655756
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.2738i 0.342649i
\(900\) 0 0
\(901\) − 0.418745i − 0.0139504i
\(902\) 0 0
\(903\) 69.4537 2.31127
\(904\) 0 0
\(905\) 9.61250 0.319530
\(906\) 0 0
\(907\) 17.7588i 0.589673i 0.955548 + 0.294836i \(0.0952651\pi\)
−0.955548 + 0.294836i \(0.904735\pi\)
\(908\) 0 0
\(909\) − 36.2094i − 1.20099i
\(910\) 0 0
\(911\) −25.2439 −0.836369 −0.418184 0.908362i \(-0.637333\pi\)
−0.418184 + 0.908362i \(0.637333\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) − 108.412i − 3.58400i
\(916\) 0 0
\(917\) 31.4922i 1.03996i
\(918\) 0 0
\(919\) 14.6441 0.483065 0.241532 0.970393i \(-0.422350\pi\)
0.241532 + 0.970393i \(0.422350\pi\)
\(920\) 0 0
\(921\) −49.0156 −1.61512
\(922\) 0 0
\(923\) − 8.25161i − 0.271605i
\(924\) 0 0
\(925\) − 32.2094i − 1.05904i
\(926\) 0 0
\(927\) 83.4943 2.74231
\(928\) 0 0
\(929\) 5.40312 0.177271 0.0886354 0.996064i \(-0.471749\pi\)
0.0886354 + 0.996064i \(0.471749\pi\)
\(930\) 0 0
\(931\) 11.6924i 0.383203i
\(932\) 0 0
\(933\) 58.2094i 1.90569i
\(934\) 0 0
\(935\) −1.20697 −0.0394721
\(936\) 0 0
\(937\) −32.8062 −1.07173 −0.535867 0.844303i \(-0.680015\pi\)
−0.535867 + 0.844303i \(0.680015\pi\)
\(938\) 0 0
\(939\) − 7.81116i − 0.254908i
\(940\) 0 0
\(941\) 16.8953i 0.550771i 0.961334 + 0.275386i \(0.0888056\pi\)
−0.961334 + 0.275386i \(0.911194\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −179.555 −5.84091
\(946\) 0 0
\(947\) 19.4549i 0.632200i 0.948726 + 0.316100i \(0.102373\pi\)
−0.948726 + 0.316100i \(0.897627\pi\)
\(948\) 0 0
\(949\) 6.00000i 0.194768i
\(950\) 0 0
\(951\) 77.2648 2.50548
\(952\) 0 0
\(953\) −49.3141 −1.59744 −0.798720 0.601704i \(-0.794489\pi\)
−0.798720 + 0.601704i \(0.794489\pi\)
\(954\) 0 0
\(955\) 14.9702i 0.484424i
\(956\) 0 0
\(957\) 6.80625i 0.220015i
\(958\) 0 0
\(959\) 85.0273 2.74568
\(960\) 0 0
\(961\) −4.61250 −0.148790
\(962\) 0 0
\(963\) 98.1384i 3.16247i
\(964\) 0 0
\(965\) 79.2250i 2.55034i
\(966\) 0 0
\(967\) −0.163035 −0.00524285 −0.00262143 0.999997i \(-0.500834\pi\)
−0.00262143 + 0.999997i \(0.500834\pi\)
\(968\) 0 0
\(969\) −1.01562 −0.0326265
\(970\) 0 0
\(971\) 17.4328i 0.559444i 0.960081 + 0.279722i \(0.0902424\pi\)
−0.960081 + 0.279722i \(0.909758\pi\)
\(972\) 0 0
\(973\) − 65.5234i − 2.10058i
\(974\) 0 0
\(975\) 27.1030 0.867992
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 6.55554i 0.209516i
\(980\) 0 0
\(981\) − 28.8062i − 0.919713i
\(982\) 0 0
\(983\) 49.9988 1.59471 0.797356 0.603509i \(-0.206231\pi\)
0.797356 + 0.603509i \(0.206231\pi\)
\(984\) 0 0
\(985\) −60.3297 −1.92226
\(986\) 0 0
\(987\) − 55.1356i − 1.75499i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.8736 0.663071 0.331536 0.943443i \(-0.392433\pi\)
0.331536 + 0.943443i \(0.392433\pi\)
\(992\) 0 0
\(993\) 75.2250 2.38719
\(994\) 0 0
\(995\) 69.1763i 2.19304i
\(996\) 0 0
\(997\) − 4.80625i − 0.152215i −0.997100 0.0761077i \(-0.975751\pi\)
0.997100 0.0761077i \(-0.0242493\pi\)
\(998\) 0 0
\(999\) 42.6767 1.35023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.b.bb.1665.8 8
4.3 odd 2 inner 3328.2.b.bb.1665.2 8
8.3 odd 2 inner 3328.2.b.bb.1665.7 8
8.5 even 2 inner 3328.2.b.bb.1665.1 8
16.3 odd 4 832.2.a.p.1.4 4
16.5 even 4 416.2.a.f.1.4 yes 4
16.11 odd 4 416.2.a.f.1.1 4
16.13 even 4 832.2.a.p.1.1 4
48.5 odd 4 3744.2.a.be.1.4 4
48.11 even 4 3744.2.a.be.1.3 4
48.29 odd 4 7488.2.a.da.1.2 4
48.35 even 4 7488.2.a.da.1.1 4
208.155 odd 4 5408.2.a.bj.1.1 4
208.181 even 4 5408.2.a.bj.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.f.1.1 4 16.11 odd 4
416.2.a.f.1.4 yes 4 16.5 even 4
832.2.a.p.1.1 4 16.13 even 4
832.2.a.p.1.4 4 16.3 odd 4
3328.2.b.bb.1665.1 8 8.5 even 2 inner
3328.2.b.bb.1665.2 8 4.3 odd 2 inner
3328.2.b.bb.1665.7 8 8.3 odd 2 inner
3328.2.b.bb.1665.8 8 1.1 even 1 trivial
3744.2.a.be.1.3 4 48.11 even 4
3744.2.a.be.1.4 4 48.5 odd 4
5408.2.a.bj.1.1 4 208.155 odd 4
5408.2.a.bj.1.4 4 208.181 even 4
7488.2.a.da.1.1 4 48.35 even 4
7488.2.a.da.1.2 4 48.29 odd 4