Properties

Label 3328.2.a.m.1.2
Level $3328$
Weight $2$
Character 3328.1
Self dual yes
Analytic conductor $26.574$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3328.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{3} +3.46410 q^{5} -4.73205 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +3.46410 q^{5} -4.73205 q^{7} +1.00000 q^{9} -1.26795 q^{11} +1.00000 q^{13} -6.92820 q^{15} -1.46410 q^{17} +2.73205 q^{19} +9.46410 q^{21} +4.00000 q^{23} +7.00000 q^{25} +4.00000 q^{27} +2.00000 q^{29} +3.26795 q^{31} +2.53590 q^{33} -16.3923 q^{35} -4.92820 q^{37} -2.00000 q^{39} +4.92820 q^{41} -7.46410 q^{43} +3.46410 q^{45} -3.26795 q^{47} +15.3923 q^{49} +2.92820 q^{51} -10.9282 q^{53} -4.39230 q^{55} -5.46410 q^{57} +0.196152 q^{59} -10.9282 q^{61} -4.73205 q^{63} +3.46410 q^{65} +2.73205 q^{67} -8.00000 q^{69} +2.19615 q^{71} +0.535898 q^{73} -14.0000 q^{75} +6.00000 q^{77} +1.46410 q^{79} -11.0000 q^{81} -6.73205 q^{83} -5.07180 q^{85} -4.00000 q^{87} -17.3205 q^{89} -4.73205 q^{91} -6.53590 q^{93} +9.46410 q^{95} -14.3923 q^{97} -1.26795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 6 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{3} - 6 q^{7} + 2 q^{9} - 6 q^{11} + 2 q^{13} + 4 q^{17} + 2 q^{19} + 12 q^{21} + 8 q^{23} + 14 q^{25} + 8 q^{27} + 4 q^{29} + 10 q^{31} + 12 q^{33} - 12 q^{35} + 4 q^{37} - 4 q^{39} - 4 q^{41} - 8 q^{43} - 10 q^{47} + 10 q^{49} - 8 q^{51} - 8 q^{53} + 12 q^{55} - 4 q^{57} - 10 q^{59} - 8 q^{61} - 6 q^{63} + 2 q^{67} - 16 q^{69} - 6 q^{71} + 8 q^{73} - 28 q^{75} + 12 q^{77} - 4 q^{79} - 22 q^{81} - 10 q^{83} - 24 q^{85} - 8 q^{87} - 6 q^{91} - 20 q^{93} + 12 q^{95} - 8 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 3.46410 1.54919 0.774597 0.632456i \(-0.217953\pi\)
0.774597 + 0.632456i \(0.217953\pi\)
\(6\) 0 0
\(7\) −4.73205 −1.78855 −0.894274 0.447521i \(-0.852307\pi\)
−0.894274 + 0.447521i \(0.852307\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.26795 −0.382301 −0.191151 0.981561i \(-0.561222\pi\)
−0.191151 + 0.981561i \(0.561222\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −6.92820 −1.78885
\(16\) 0 0
\(17\) −1.46410 −0.355097 −0.177548 0.984112i \(-0.556817\pi\)
−0.177548 + 0.984112i \(0.556817\pi\)
\(18\) 0 0
\(19\) 2.73205 0.626775 0.313388 0.949625i \(-0.398536\pi\)
0.313388 + 0.949625i \(0.398536\pi\)
\(20\) 0 0
\(21\) 9.46410 2.06524
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 7.00000 1.40000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 3.26795 0.586941 0.293471 0.955968i \(-0.405190\pi\)
0.293471 + 0.955968i \(0.405190\pi\)
\(32\) 0 0
\(33\) 2.53590 0.441443
\(34\) 0 0
\(35\) −16.3923 −2.77081
\(36\) 0 0
\(37\) −4.92820 −0.810192 −0.405096 0.914274i \(-0.632762\pi\)
−0.405096 + 0.914274i \(0.632762\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 4.92820 0.769656 0.384828 0.922988i \(-0.374261\pi\)
0.384828 + 0.922988i \(0.374261\pi\)
\(42\) 0 0
\(43\) −7.46410 −1.13826 −0.569132 0.822246i \(-0.692721\pi\)
−0.569132 + 0.822246i \(0.692721\pi\)
\(44\) 0 0
\(45\) 3.46410 0.516398
\(46\) 0 0
\(47\) −3.26795 −0.476679 −0.238340 0.971182i \(-0.576603\pi\)
−0.238340 + 0.971182i \(0.576603\pi\)
\(48\) 0 0
\(49\) 15.3923 2.19890
\(50\) 0 0
\(51\) 2.92820 0.410030
\(52\) 0 0
\(53\) −10.9282 −1.50110 −0.750552 0.660811i \(-0.770212\pi\)
−0.750552 + 0.660811i \(0.770212\pi\)
\(54\) 0 0
\(55\) −4.39230 −0.592258
\(56\) 0 0
\(57\) −5.46410 −0.723738
\(58\) 0 0
\(59\) 0.196152 0.0255369 0.0127684 0.999918i \(-0.495936\pi\)
0.0127684 + 0.999918i \(0.495936\pi\)
\(60\) 0 0
\(61\) −10.9282 −1.39921 −0.699607 0.714528i \(-0.746641\pi\)
−0.699607 + 0.714528i \(0.746641\pi\)
\(62\) 0 0
\(63\) −4.73205 −0.596182
\(64\) 0 0
\(65\) 3.46410 0.429669
\(66\) 0 0
\(67\) 2.73205 0.333773 0.166887 0.985976i \(-0.446629\pi\)
0.166887 + 0.985976i \(0.446629\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) 2.19615 0.260635 0.130318 0.991472i \(-0.458400\pi\)
0.130318 + 0.991472i \(0.458400\pi\)
\(72\) 0 0
\(73\) 0.535898 0.0627222 0.0313611 0.999508i \(-0.490016\pi\)
0.0313611 + 0.999508i \(0.490016\pi\)
\(74\) 0 0
\(75\) −14.0000 −1.61658
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) 1.46410 0.164724 0.0823622 0.996602i \(-0.473754\pi\)
0.0823622 + 0.996602i \(0.473754\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −6.73205 −0.738939 −0.369469 0.929243i \(-0.620461\pi\)
−0.369469 + 0.929243i \(0.620461\pi\)
\(84\) 0 0
\(85\) −5.07180 −0.550114
\(86\) 0 0
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) −17.3205 −1.83597 −0.917985 0.396615i \(-0.870185\pi\)
−0.917985 + 0.396615i \(0.870185\pi\)
\(90\) 0 0
\(91\) −4.73205 −0.496054
\(92\) 0 0
\(93\) −6.53590 −0.677741
\(94\) 0 0
\(95\) 9.46410 0.970996
\(96\) 0 0
\(97\) −14.3923 −1.46132 −0.730659 0.682743i \(-0.760787\pi\)
−0.730659 + 0.682743i \(0.760787\pi\)
\(98\) 0 0
\(99\) −1.26795 −0.127434
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) 0 0
\(105\) 32.7846 3.19945
\(106\) 0 0
\(107\) −8.92820 −0.863122 −0.431561 0.902084i \(-0.642037\pi\)
−0.431561 + 0.902084i \(0.642037\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 9.85641 0.935529
\(112\) 0 0
\(113\) 9.46410 0.890308 0.445154 0.895454i \(-0.353149\pi\)
0.445154 + 0.895454i \(0.353149\pi\)
\(114\) 0 0
\(115\) 13.8564 1.29212
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 6.92820 0.635107
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) 0 0
\(123\) −9.85641 −0.888722
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 14.9282 1.31436
\(130\) 0 0
\(131\) 7.85641 0.686417 0.343209 0.939259i \(-0.388486\pi\)
0.343209 + 0.939259i \(0.388486\pi\)
\(132\) 0 0
\(133\) −12.9282 −1.12102
\(134\) 0 0
\(135\) 13.8564 1.19257
\(136\) 0 0
\(137\) 0.928203 0.0793018 0.0396509 0.999214i \(-0.487375\pi\)
0.0396509 + 0.999214i \(0.487375\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 6.53590 0.550422
\(142\) 0 0
\(143\) −1.26795 −0.106031
\(144\) 0 0
\(145\) 6.92820 0.575356
\(146\) 0 0
\(147\) −30.7846 −2.53907
\(148\) 0 0
\(149\) −0.928203 −0.0760414 −0.0380207 0.999277i \(-0.512105\pi\)
−0.0380207 + 0.999277i \(0.512105\pi\)
\(150\) 0 0
\(151\) 17.1244 1.39356 0.696780 0.717285i \(-0.254615\pi\)
0.696780 + 0.717285i \(0.254615\pi\)
\(152\) 0 0
\(153\) −1.46410 −0.118366
\(154\) 0 0
\(155\) 11.3205 0.909285
\(156\) 0 0
\(157\) −3.07180 −0.245156 −0.122578 0.992459i \(-0.539116\pi\)
−0.122578 + 0.992459i \(0.539116\pi\)
\(158\) 0 0
\(159\) 21.8564 1.73333
\(160\) 0 0
\(161\) −18.9282 −1.49175
\(162\) 0 0
\(163\) −13.2679 −1.03923 −0.519613 0.854402i \(-0.673924\pi\)
−0.519613 + 0.854402i \(0.673924\pi\)
\(164\) 0 0
\(165\) 8.78461 0.683881
\(166\) 0 0
\(167\) 11.6603 0.902298 0.451149 0.892449i \(-0.351014\pi\)
0.451149 + 0.892449i \(0.351014\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 2.73205 0.208925
\(172\) 0 0
\(173\) −6.92820 −0.526742 −0.263371 0.964695i \(-0.584834\pi\)
−0.263371 + 0.964695i \(0.584834\pi\)
\(174\) 0 0
\(175\) −33.1244 −2.50397
\(176\) 0 0
\(177\) −0.392305 −0.0294874
\(178\) 0 0
\(179\) −10.3923 −0.776757 −0.388379 0.921500i \(-0.626965\pi\)
−0.388379 + 0.921500i \(0.626965\pi\)
\(180\) 0 0
\(181\) −4.92820 −0.366310 −0.183155 0.983084i \(-0.558631\pi\)
−0.183155 + 0.983084i \(0.558631\pi\)
\(182\) 0 0
\(183\) 21.8564 1.61567
\(184\) 0 0
\(185\) −17.0718 −1.25514
\(186\) 0 0
\(187\) 1.85641 0.135754
\(188\) 0 0
\(189\) −18.9282 −1.37682
\(190\) 0 0
\(191\) 21.4641 1.55309 0.776544 0.630063i \(-0.216971\pi\)
0.776544 + 0.630063i \(0.216971\pi\)
\(192\) 0 0
\(193\) −22.3923 −1.61183 −0.805917 0.592029i \(-0.798327\pi\)
−0.805917 + 0.592029i \(0.798327\pi\)
\(194\) 0 0
\(195\) −6.92820 −0.496139
\(196\) 0 0
\(197\) 16.9282 1.20608 0.603042 0.797709i \(-0.293955\pi\)
0.603042 + 0.797709i \(0.293955\pi\)
\(198\) 0 0
\(199\) −24.7846 −1.75693 −0.878467 0.477803i \(-0.841433\pi\)
−0.878467 + 0.477803i \(0.841433\pi\)
\(200\) 0 0
\(201\) −5.46410 −0.385408
\(202\) 0 0
\(203\) −9.46410 −0.664250
\(204\) 0 0
\(205\) 17.0718 1.19235
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) −19.8564 −1.36697 −0.683486 0.729964i \(-0.739537\pi\)
−0.683486 + 0.729964i \(0.739537\pi\)
\(212\) 0 0
\(213\) −4.39230 −0.300956
\(214\) 0 0
\(215\) −25.8564 −1.76339
\(216\) 0 0
\(217\) −15.4641 −1.04977
\(218\) 0 0
\(219\) −1.07180 −0.0724253
\(220\) 0 0
\(221\) −1.46410 −0.0984861
\(222\) 0 0
\(223\) −10.1962 −0.682785 −0.341392 0.939921i \(-0.610899\pi\)
−0.341392 + 0.939921i \(0.610899\pi\)
\(224\) 0 0
\(225\) 7.00000 0.466667
\(226\) 0 0
\(227\) −27.1244 −1.80031 −0.900153 0.435573i \(-0.856546\pi\)
−0.900153 + 0.435573i \(0.856546\pi\)
\(228\) 0 0
\(229\) −29.3205 −1.93755 −0.968777 0.247934i \(-0.920248\pi\)
−0.968777 + 0.247934i \(0.920248\pi\)
\(230\) 0 0
\(231\) −12.0000 −0.789542
\(232\) 0 0
\(233\) −3.07180 −0.201240 −0.100620 0.994925i \(-0.532083\pi\)
−0.100620 + 0.994925i \(0.532083\pi\)
\(234\) 0 0
\(235\) −11.3205 −0.738469
\(236\) 0 0
\(237\) −2.92820 −0.190207
\(238\) 0 0
\(239\) −15.2679 −0.987602 −0.493801 0.869575i \(-0.664393\pi\)
−0.493801 + 0.869575i \(0.664393\pi\)
\(240\) 0 0
\(241\) −9.60770 −0.618886 −0.309443 0.950918i \(-0.600143\pi\)
−0.309443 + 0.950918i \(0.600143\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 53.3205 3.40652
\(246\) 0 0
\(247\) 2.73205 0.173836
\(248\) 0 0
\(249\) 13.4641 0.853253
\(250\) 0 0
\(251\) −14.3923 −0.908434 −0.454217 0.890891i \(-0.650081\pi\)
−0.454217 + 0.890891i \(0.650081\pi\)
\(252\) 0 0
\(253\) −5.07180 −0.318861
\(254\) 0 0
\(255\) 10.1436 0.635216
\(256\) 0 0
\(257\) 3.85641 0.240556 0.120278 0.992740i \(-0.461621\pi\)
0.120278 + 0.992740i \(0.461621\pi\)
\(258\) 0 0
\(259\) 23.3205 1.44907
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 7.32051 0.451402 0.225701 0.974197i \(-0.427533\pi\)
0.225701 + 0.974197i \(0.427533\pi\)
\(264\) 0 0
\(265\) −37.8564 −2.32550
\(266\) 0 0
\(267\) 34.6410 2.12000
\(268\) 0 0
\(269\) 19.8564 1.21067 0.605333 0.795972i \(-0.293040\pi\)
0.605333 + 0.795972i \(0.293040\pi\)
\(270\) 0 0
\(271\) 9.80385 0.595541 0.297771 0.954637i \(-0.403757\pi\)
0.297771 + 0.954637i \(0.403757\pi\)
\(272\) 0 0
\(273\) 9.46410 0.572793
\(274\) 0 0
\(275\) −8.87564 −0.535221
\(276\) 0 0
\(277\) 25.8564 1.55356 0.776780 0.629771i \(-0.216851\pi\)
0.776780 + 0.629771i \(0.216851\pi\)
\(278\) 0 0
\(279\) 3.26795 0.195647
\(280\) 0 0
\(281\) 25.3205 1.51049 0.755247 0.655440i \(-0.227517\pi\)
0.755247 + 0.655440i \(0.227517\pi\)
\(282\) 0 0
\(283\) 12.5359 0.745182 0.372591 0.927996i \(-0.378469\pi\)
0.372591 + 0.927996i \(0.378469\pi\)
\(284\) 0 0
\(285\) −18.9282 −1.12121
\(286\) 0 0
\(287\) −23.3205 −1.37657
\(288\) 0 0
\(289\) −14.8564 −0.873906
\(290\) 0 0
\(291\) 28.7846 1.68738
\(292\) 0 0
\(293\) −19.0718 −1.11419 −0.557093 0.830450i \(-0.688083\pi\)
−0.557093 + 0.830450i \(0.688083\pi\)
\(294\) 0 0
\(295\) 0.679492 0.0395615
\(296\) 0 0
\(297\) −5.07180 −0.294295
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 35.3205 2.03584
\(302\) 0 0
\(303\) −24.0000 −1.37876
\(304\) 0 0
\(305\) −37.8564 −2.16765
\(306\) 0 0
\(307\) 2.73205 0.155926 0.0779632 0.996956i \(-0.475158\pi\)
0.0779632 + 0.996956i \(0.475158\pi\)
\(308\) 0 0
\(309\) 13.8564 0.788263
\(310\) 0 0
\(311\) 14.9282 0.846501 0.423250 0.906013i \(-0.360889\pi\)
0.423250 + 0.906013i \(0.360889\pi\)
\(312\) 0 0
\(313\) 20.3923 1.15264 0.576321 0.817224i \(-0.304488\pi\)
0.576321 + 0.817224i \(0.304488\pi\)
\(314\) 0 0
\(315\) −16.3923 −0.923602
\(316\) 0 0
\(317\) −3.46410 −0.194563 −0.0972817 0.995257i \(-0.531015\pi\)
−0.0972817 + 0.995257i \(0.531015\pi\)
\(318\) 0 0
\(319\) −2.53590 −0.141983
\(320\) 0 0
\(321\) 17.8564 0.996647
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 7.00000 0.388290
\(326\) 0 0
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) 15.4641 0.852564
\(330\) 0 0
\(331\) −27.5167 −1.51245 −0.756226 0.654310i \(-0.772959\pi\)
−0.756226 + 0.654310i \(0.772959\pi\)
\(332\) 0 0
\(333\) −4.92820 −0.270064
\(334\) 0 0
\(335\) 9.46410 0.517079
\(336\) 0 0
\(337\) −5.46410 −0.297649 −0.148824 0.988864i \(-0.547549\pi\)
−0.148824 + 0.988864i \(0.547549\pi\)
\(338\) 0 0
\(339\) −18.9282 −1.02804
\(340\) 0 0
\(341\) −4.14359 −0.224388
\(342\) 0 0
\(343\) −39.7128 −2.14429
\(344\) 0 0
\(345\) −27.7128 −1.49201
\(346\) 0 0
\(347\) −20.9282 −1.12348 −0.561742 0.827312i \(-0.689869\pi\)
−0.561742 + 0.827312i \(0.689869\pi\)
\(348\) 0 0
\(349\) 30.3923 1.62686 0.813431 0.581661i \(-0.197597\pi\)
0.813431 + 0.581661i \(0.197597\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) −24.9282 −1.32679 −0.663397 0.748267i \(-0.730886\pi\)
−0.663397 + 0.748267i \(0.730886\pi\)
\(354\) 0 0
\(355\) 7.60770 0.403775
\(356\) 0 0
\(357\) −13.8564 −0.733359
\(358\) 0 0
\(359\) −13.5167 −0.713382 −0.356691 0.934222i \(-0.616095\pi\)
−0.356691 + 0.934222i \(0.616095\pi\)
\(360\) 0 0
\(361\) −11.5359 −0.607153
\(362\) 0 0
\(363\) 18.7846 0.985936
\(364\) 0 0
\(365\) 1.85641 0.0971688
\(366\) 0 0
\(367\) −26.2487 −1.37017 −0.685086 0.728462i \(-0.740235\pi\)
−0.685086 + 0.728462i \(0.740235\pi\)
\(368\) 0 0
\(369\) 4.92820 0.256552
\(370\) 0 0
\(371\) 51.7128 2.68480
\(372\) 0 0
\(373\) −26.7846 −1.38685 −0.693427 0.720527i \(-0.743900\pi\)
−0.693427 + 0.720527i \(0.743900\pi\)
\(374\) 0 0
\(375\) −13.8564 −0.715542
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −16.5885 −0.852092 −0.426046 0.904702i \(-0.640094\pi\)
−0.426046 + 0.904702i \(0.640094\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 27.6603 1.41337 0.706686 0.707527i \(-0.250189\pi\)
0.706686 + 0.707527i \(0.250189\pi\)
\(384\) 0 0
\(385\) 20.7846 1.05928
\(386\) 0 0
\(387\) −7.46410 −0.379422
\(388\) 0 0
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 0 0
\(391\) −5.85641 −0.296171
\(392\) 0 0
\(393\) −15.7128 −0.792607
\(394\) 0 0
\(395\) 5.07180 0.255190
\(396\) 0 0
\(397\) −11.4641 −0.575367 −0.287683 0.957726i \(-0.592885\pi\)
−0.287683 + 0.957726i \(0.592885\pi\)
\(398\) 0 0
\(399\) 25.8564 1.29444
\(400\) 0 0
\(401\) 11.4641 0.572490 0.286245 0.958156i \(-0.407593\pi\)
0.286245 + 0.958156i \(0.407593\pi\)
\(402\) 0 0
\(403\) 3.26795 0.162788
\(404\) 0 0
\(405\) −38.1051 −1.89346
\(406\) 0 0
\(407\) 6.24871 0.309737
\(408\) 0 0
\(409\) 0.928203 0.0458967 0.0229483 0.999737i \(-0.492695\pi\)
0.0229483 + 0.999737i \(0.492695\pi\)
\(410\) 0 0
\(411\) −1.85641 −0.0915698
\(412\) 0 0
\(413\) −0.928203 −0.0456739
\(414\) 0 0
\(415\) −23.3205 −1.14476
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) −10.7846 −0.526863 −0.263431 0.964678i \(-0.584854\pi\)
−0.263431 + 0.964678i \(0.584854\pi\)
\(420\) 0 0
\(421\) 24.2487 1.18181 0.590905 0.806741i \(-0.298771\pi\)
0.590905 + 0.806741i \(0.298771\pi\)
\(422\) 0 0
\(423\) −3.26795 −0.158893
\(424\) 0 0
\(425\) −10.2487 −0.497136
\(426\) 0 0
\(427\) 51.7128 2.50256
\(428\) 0 0
\(429\) 2.53590 0.122434
\(430\) 0 0
\(431\) −14.8756 −0.716535 −0.358267 0.933619i \(-0.616632\pi\)
−0.358267 + 0.933619i \(0.616632\pi\)
\(432\) 0 0
\(433\) 34.7846 1.67164 0.835821 0.549002i \(-0.184992\pi\)
0.835821 + 0.549002i \(0.184992\pi\)
\(434\) 0 0
\(435\) −13.8564 −0.664364
\(436\) 0 0
\(437\) 10.9282 0.522767
\(438\) 0 0
\(439\) −10.9282 −0.521575 −0.260787 0.965396i \(-0.583982\pi\)
−0.260787 + 0.965396i \(0.583982\pi\)
\(440\) 0 0
\(441\) 15.3923 0.732967
\(442\) 0 0
\(443\) −30.0000 −1.42534 −0.712672 0.701498i \(-0.752515\pi\)
−0.712672 + 0.701498i \(0.752515\pi\)
\(444\) 0 0
\(445\) −60.0000 −2.84427
\(446\) 0 0
\(447\) 1.85641 0.0878050
\(448\) 0 0
\(449\) 38.3923 1.81184 0.905922 0.423444i \(-0.139179\pi\)
0.905922 + 0.423444i \(0.139179\pi\)
\(450\) 0 0
\(451\) −6.24871 −0.294240
\(452\) 0 0
\(453\) −34.2487 −1.60914
\(454\) 0 0
\(455\) −16.3923 −0.768483
\(456\) 0 0
\(457\) 14.0000 0.654892 0.327446 0.944870i \(-0.393812\pi\)
0.327446 + 0.944870i \(0.393812\pi\)
\(458\) 0 0
\(459\) −5.85641 −0.273354
\(460\) 0 0
\(461\) 7.07180 0.329366 0.164683 0.986347i \(-0.447340\pi\)
0.164683 + 0.986347i \(0.447340\pi\)
\(462\) 0 0
\(463\) 15.6603 0.727794 0.363897 0.931439i \(-0.381446\pi\)
0.363897 + 0.931439i \(0.381446\pi\)
\(464\) 0 0
\(465\) −22.6410 −1.04995
\(466\) 0 0
\(467\) 12.2487 0.566803 0.283401 0.959001i \(-0.408537\pi\)
0.283401 + 0.959001i \(0.408537\pi\)
\(468\) 0 0
\(469\) −12.9282 −0.596969
\(470\) 0 0
\(471\) 6.14359 0.283082
\(472\) 0 0
\(473\) 9.46410 0.435160
\(474\) 0 0
\(475\) 19.1244 0.877486
\(476\) 0 0
\(477\) −10.9282 −0.500368
\(478\) 0 0
\(479\) −24.7321 −1.13004 −0.565018 0.825078i \(-0.691131\pi\)
−0.565018 + 0.825078i \(0.691131\pi\)
\(480\) 0 0
\(481\) −4.92820 −0.224707
\(482\) 0 0
\(483\) 37.8564 1.72253
\(484\) 0 0
\(485\) −49.8564 −2.26386
\(486\) 0 0
\(487\) 16.4449 0.745188 0.372594 0.927994i \(-0.378468\pi\)
0.372594 + 0.927994i \(0.378468\pi\)
\(488\) 0 0
\(489\) 26.5359 1.19999
\(490\) 0 0
\(491\) 24.2487 1.09433 0.547165 0.837025i \(-0.315707\pi\)
0.547165 + 0.837025i \(0.315707\pi\)
\(492\) 0 0
\(493\) −2.92820 −0.131880
\(494\) 0 0
\(495\) −4.39230 −0.197419
\(496\) 0 0
\(497\) −10.3923 −0.466159
\(498\) 0 0
\(499\) 10.7321 0.480433 0.240216 0.970719i \(-0.422782\pi\)
0.240216 + 0.970719i \(0.422782\pi\)
\(500\) 0 0
\(501\) −23.3205 −1.04188
\(502\) 0 0
\(503\) 37.4641 1.67044 0.835221 0.549915i \(-0.185340\pi\)
0.835221 + 0.549915i \(0.185340\pi\)
\(504\) 0 0
\(505\) 41.5692 1.84981
\(506\) 0 0
\(507\) −2.00000 −0.0888231
\(508\) 0 0
\(509\) −6.39230 −0.283334 −0.141667 0.989914i \(-0.545246\pi\)
−0.141667 + 0.989914i \(0.545246\pi\)
\(510\) 0 0
\(511\) −2.53590 −0.112182
\(512\) 0 0
\(513\) 10.9282 0.482492
\(514\) 0 0
\(515\) −24.0000 −1.05757
\(516\) 0 0
\(517\) 4.14359 0.182235
\(518\) 0 0
\(519\) 13.8564 0.608229
\(520\) 0 0
\(521\) −37.1769 −1.62875 −0.814375 0.580339i \(-0.802920\pi\)
−0.814375 + 0.580339i \(0.802920\pi\)
\(522\) 0 0
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) 0 0
\(525\) 66.2487 2.89133
\(526\) 0 0
\(527\) −4.78461 −0.208421
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0.196152 0.00851229
\(532\) 0 0
\(533\) 4.92820 0.213464
\(534\) 0 0
\(535\) −30.9282 −1.33714
\(536\) 0 0
\(537\) 20.7846 0.896922
\(538\) 0 0
\(539\) −19.5167 −0.840642
\(540\) 0 0
\(541\) −16.9282 −0.727800 −0.363900 0.931438i \(-0.618555\pi\)
−0.363900 + 0.931438i \(0.618555\pi\)
\(542\) 0 0
\(543\) 9.85641 0.422979
\(544\) 0 0
\(545\) −6.92820 −0.296772
\(546\) 0 0
\(547\) −15.8564 −0.677971 −0.338985 0.940792i \(-0.610084\pi\)
−0.338985 + 0.940792i \(0.610084\pi\)
\(548\) 0 0
\(549\) −10.9282 −0.466404
\(550\) 0 0
\(551\) 5.46410 0.232779
\(552\) 0 0
\(553\) −6.92820 −0.294617
\(554\) 0 0
\(555\) 34.1436 1.44931
\(556\) 0 0
\(557\) −6.78461 −0.287473 −0.143737 0.989616i \(-0.545912\pi\)
−0.143737 + 0.989616i \(0.545912\pi\)
\(558\) 0 0
\(559\) −7.46410 −0.315698
\(560\) 0 0
\(561\) −3.71281 −0.156755
\(562\) 0 0
\(563\) 0.535898 0.0225854 0.0112927 0.999936i \(-0.496405\pi\)
0.0112927 + 0.999936i \(0.496405\pi\)
\(564\) 0 0
\(565\) 32.7846 1.37926
\(566\) 0 0
\(567\) 52.0526 2.18600
\(568\) 0 0
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) 37.3205 1.56181 0.780907 0.624647i \(-0.214757\pi\)
0.780907 + 0.624647i \(0.214757\pi\)
\(572\) 0 0
\(573\) −42.9282 −1.79335
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −20.9282 −0.871253 −0.435626 0.900128i \(-0.643473\pi\)
−0.435626 + 0.900128i \(0.643473\pi\)
\(578\) 0 0
\(579\) 44.7846 1.86118
\(580\) 0 0
\(581\) 31.8564 1.32163
\(582\) 0 0
\(583\) 13.8564 0.573874
\(584\) 0 0
\(585\) 3.46410 0.143223
\(586\) 0 0
\(587\) −21.6603 −0.894014 −0.447007 0.894530i \(-0.647510\pi\)
−0.447007 + 0.894530i \(0.647510\pi\)
\(588\) 0 0
\(589\) 8.92820 0.367880
\(590\) 0 0
\(591\) −33.8564 −1.39267
\(592\) 0 0
\(593\) 19.8564 0.815405 0.407702 0.913115i \(-0.366330\pi\)
0.407702 + 0.913115i \(0.366330\pi\)
\(594\) 0 0
\(595\) 24.0000 0.983904
\(596\) 0 0
\(597\) 49.5692 2.02873
\(598\) 0 0
\(599\) 17.1769 0.701830 0.350915 0.936407i \(-0.385871\pi\)
0.350915 + 0.936407i \(0.385871\pi\)
\(600\) 0 0
\(601\) −16.3923 −0.668656 −0.334328 0.942457i \(-0.608509\pi\)
−0.334328 + 0.942457i \(0.608509\pi\)
\(602\) 0 0
\(603\) 2.73205 0.111258
\(604\) 0 0
\(605\) −32.5359 −1.32277
\(606\) 0 0
\(607\) 27.3205 1.10891 0.554453 0.832215i \(-0.312928\pi\)
0.554453 + 0.832215i \(0.312928\pi\)
\(608\) 0 0
\(609\) 18.9282 0.767010
\(610\) 0 0
\(611\) −3.26795 −0.132207
\(612\) 0 0
\(613\) 44.6410 1.80303 0.901517 0.432744i \(-0.142455\pi\)
0.901517 + 0.432744i \(0.142455\pi\)
\(614\) 0 0
\(615\) −34.1436 −1.37680
\(616\) 0 0
\(617\) −6.67949 −0.268906 −0.134453 0.990920i \(-0.542928\pi\)
−0.134453 + 0.990920i \(0.542928\pi\)
\(618\) 0 0
\(619\) 12.5885 0.505973 0.252986 0.967470i \(-0.418587\pi\)
0.252986 + 0.967470i \(0.418587\pi\)
\(620\) 0 0
\(621\) 16.0000 0.642058
\(622\) 0 0
\(623\) 81.9615 3.28372
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 6.92820 0.276686
\(628\) 0 0
\(629\) 7.21539 0.287696
\(630\) 0 0
\(631\) −3.94744 −0.157145 −0.0785726 0.996908i \(-0.525036\pi\)
−0.0785726 + 0.996908i \(0.525036\pi\)
\(632\) 0 0
\(633\) 39.7128 1.57844
\(634\) 0 0
\(635\) 13.8564 0.549875
\(636\) 0 0
\(637\) 15.3923 0.609865
\(638\) 0 0
\(639\) 2.19615 0.0868784
\(640\) 0 0
\(641\) 26.2487 1.03676 0.518381 0.855150i \(-0.326535\pi\)
0.518381 + 0.855150i \(0.326535\pi\)
\(642\) 0 0
\(643\) 9.26795 0.365492 0.182746 0.983160i \(-0.441501\pi\)
0.182746 + 0.983160i \(0.441501\pi\)
\(644\) 0 0
\(645\) 51.7128 2.03619
\(646\) 0 0
\(647\) 10.1436 0.398786 0.199393 0.979920i \(-0.436103\pi\)
0.199393 + 0.979920i \(0.436103\pi\)
\(648\) 0 0
\(649\) −0.248711 −0.00976277
\(650\) 0 0
\(651\) 30.9282 1.21217
\(652\) 0 0
\(653\) −16.9282 −0.662452 −0.331226 0.943551i \(-0.607462\pi\)
−0.331226 + 0.943551i \(0.607462\pi\)
\(654\) 0 0
\(655\) 27.2154 1.06339
\(656\) 0 0
\(657\) 0.535898 0.0209074
\(658\) 0 0
\(659\) −14.0000 −0.545363 −0.272681 0.962104i \(-0.587910\pi\)
−0.272681 + 0.962104i \(0.587910\pi\)
\(660\) 0 0
\(661\) 17.3205 0.673690 0.336845 0.941560i \(-0.390640\pi\)
0.336845 + 0.941560i \(0.390640\pi\)
\(662\) 0 0
\(663\) 2.92820 0.113722
\(664\) 0 0
\(665\) −44.7846 −1.73667
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 20.3923 0.788412
\(670\) 0 0
\(671\) 13.8564 0.534921
\(672\) 0 0
\(673\) −29.1769 −1.12469 −0.562344 0.826904i \(-0.690100\pi\)
−0.562344 + 0.826904i \(0.690100\pi\)
\(674\) 0 0
\(675\) 28.0000 1.07772
\(676\) 0 0
\(677\) −34.9282 −1.34240 −0.671200 0.741276i \(-0.734221\pi\)
−0.671200 + 0.741276i \(0.734221\pi\)
\(678\) 0 0
\(679\) 68.1051 2.61363
\(680\) 0 0
\(681\) 54.2487 2.07882
\(682\) 0 0
\(683\) −28.1962 −1.07890 −0.539448 0.842019i \(-0.681367\pi\)
−0.539448 + 0.842019i \(0.681367\pi\)
\(684\) 0 0
\(685\) 3.21539 0.122854
\(686\) 0 0
\(687\) 58.6410 2.23729
\(688\) 0 0
\(689\) −10.9282 −0.416331
\(690\) 0 0
\(691\) −46.8372 −1.78177 −0.890885 0.454229i \(-0.849915\pi\)
−0.890885 + 0.454229i \(0.849915\pi\)
\(692\) 0 0
\(693\) 6.00000 0.227921
\(694\) 0 0
\(695\) −34.6410 −1.31401
\(696\) 0 0
\(697\) −7.21539 −0.273302
\(698\) 0 0
\(699\) 6.14359 0.232372
\(700\) 0 0
\(701\) 28.6410 1.08176 0.540878 0.841101i \(-0.318092\pi\)
0.540878 + 0.841101i \(0.318092\pi\)
\(702\) 0 0
\(703\) −13.4641 −0.507808
\(704\) 0 0
\(705\) 22.6410 0.852710
\(706\) 0 0
\(707\) −56.7846 −2.13561
\(708\) 0 0
\(709\) 5.32051 0.199816 0.0999079 0.994997i \(-0.468145\pi\)
0.0999079 + 0.994997i \(0.468145\pi\)
\(710\) 0 0
\(711\) 1.46410 0.0549081
\(712\) 0 0
\(713\) 13.0718 0.489543
\(714\) 0 0
\(715\) −4.39230 −0.164263
\(716\) 0 0
\(717\) 30.5359 1.14038
\(718\) 0 0
\(719\) −17.0718 −0.636671 −0.318335 0.947978i \(-0.603124\pi\)
−0.318335 + 0.947978i \(0.603124\pi\)
\(720\) 0 0
\(721\) 32.7846 1.22096
\(722\) 0 0
\(723\) 19.2154 0.714628
\(724\) 0 0
\(725\) 14.0000 0.519947
\(726\) 0 0
\(727\) −9.07180 −0.336454 −0.168227 0.985748i \(-0.553804\pi\)
−0.168227 + 0.985748i \(0.553804\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 10.9282 0.404194
\(732\) 0 0
\(733\) 2.67949 0.0989693 0.0494846 0.998775i \(-0.484242\pi\)
0.0494846 + 0.998775i \(0.484242\pi\)
\(734\) 0 0
\(735\) −106.641 −3.93351
\(736\) 0 0
\(737\) −3.46410 −0.127602
\(738\) 0 0
\(739\) 53.7654 1.97779 0.988896 0.148612i \(-0.0474805\pi\)
0.988896 + 0.148612i \(0.0474805\pi\)
\(740\) 0 0
\(741\) −5.46410 −0.200729
\(742\) 0 0
\(743\) −21.8038 −0.799906 −0.399953 0.916536i \(-0.630973\pi\)
−0.399953 + 0.916536i \(0.630973\pi\)
\(744\) 0 0
\(745\) −3.21539 −0.117803
\(746\) 0 0
\(747\) −6.73205 −0.246313
\(748\) 0 0
\(749\) 42.2487 1.54373
\(750\) 0 0
\(751\) −14.9282 −0.544738 −0.272369 0.962193i \(-0.587807\pi\)
−0.272369 + 0.962193i \(0.587807\pi\)
\(752\) 0 0
\(753\) 28.7846 1.04897
\(754\) 0 0
\(755\) 59.3205 2.15889
\(756\) 0 0
\(757\) 0.784610 0.0285171 0.0142586 0.999898i \(-0.495461\pi\)
0.0142586 + 0.999898i \(0.495461\pi\)
\(758\) 0 0
\(759\) 10.1436 0.368189
\(760\) 0 0
\(761\) 22.7846 0.825941 0.412971 0.910744i \(-0.364491\pi\)
0.412971 + 0.910744i \(0.364491\pi\)
\(762\) 0 0
\(763\) 9.46410 0.342623
\(764\) 0 0
\(765\) −5.07180 −0.183371
\(766\) 0 0
\(767\) 0.196152 0.00708265
\(768\) 0 0
\(769\) 24.5359 0.884787 0.442394 0.896821i \(-0.354129\pi\)
0.442394 + 0.896821i \(0.354129\pi\)
\(770\) 0 0
\(771\) −7.71281 −0.277770
\(772\) 0 0
\(773\) −20.5359 −0.738625 −0.369312 0.929305i \(-0.620407\pi\)
−0.369312 + 0.929305i \(0.620407\pi\)
\(774\) 0 0
\(775\) 22.8756 0.821717
\(776\) 0 0
\(777\) −46.6410 −1.67324
\(778\) 0 0
\(779\) 13.4641 0.482402
\(780\) 0 0
\(781\) −2.78461 −0.0996412
\(782\) 0 0
\(783\) 8.00000 0.285897
\(784\) 0 0
\(785\) −10.6410 −0.379794
\(786\) 0 0
\(787\) 4.87564 0.173798 0.0868990 0.996217i \(-0.472304\pi\)
0.0868990 + 0.996217i \(0.472304\pi\)
\(788\) 0 0
\(789\) −14.6410 −0.521234
\(790\) 0 0
\(791\) −44.7846 −1.59236
\(792\) 0 0
\(793\) −10.9282 −0.388072
\(794\) 0 0
\(795\) 75.7128 2.68526
\(796\) 0 0
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 4.78461 0.169267
\(800\) 0 0
\(801\) −17.3205 −0.611990
\(802\) 0 0
\(803\) −0.679492 −0.0239787
\(804\) 0 0
\(805\) −65.5692 −2.31101
\(806\) 0 0
\(807\) −39.7128 −1.39796
\(808\) 0 0
\(809\) −1.46410 −0.0514751 −0.0257375 0.999669i \(-0.508193\pi\)
−0.0257375 + 0.999669i \(0.508193\pi\)
\(810\) 0 0
\(811\) 52.5885 1.84663 0.923315 0.384043i \(-0.125469\pi\)
0.923315 + 0.384043i \(0.125469\pi\)
\(812\) 0 0
\(813\) −19.6077 −0.687672
\(814\) 0 0
\(815\) −45.9615 −1.60996
\(816\) 0 0
\(817\) −20.3923 −0.713436
\(818\) 0 0
\(819\) −4.73205 −0.165351
\(820\) 0 0
\(821\) −0.248711 −0.00868008 −0.00434004 0.999991i \(-0.501381\pi\)
−0.00434004 + 0.999991i \(0.501381\pi\)
\(822\) 0 0
\(823\) 20.0000 0.697156 0.348578 0.937280i \(-0.386665\pi\)
0.348578 + 0.937280i \(0.386665\pi\)
\(824\) 0 0
\(825\) 17.7513 0.618021
\(826\) 0 0
\(827\) 5.26795 0.183185 0.0915923 0.995797i \(-0.470804\pi\)
0.0915923 + 0.995797i \(0.470804\pi\)
\(828\) 0 0
\(829\) 12.7846 0.444028 0.222014 0.975043i \(-0.428737\pi\)
0.222014 + 0.975043i \(0.428737\pi\)
\(830\) 0 0
\(831\) −51.7128 −1.79390
\(832\) 0 0
\(833\) −22.5359 −0.780823
\(834\) 0 0
\(835\) 40.3923 1.39783
\(836\) 0 0
\(837\) 13.0718 0.451827
\(838\) 0 0
\(839\) 30.9808 1.06957 0.534787 0.844987i \(-0.320392\pi\)
0.534787 + 0.844987i \(0.320392\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −50.6410 −1.74417
\(844\) 0 0
\(845\) 3.46410 0.119169
\(846\) 0 0
\(847\) 44.4449 1.52714
\(848\) 0 0
\(849\) −25.0718 −0.860462
\(850\) 0 0
\(851\) −19.7128 −0.675747
\(852\) 0 0
\(853\) −7.17691 −0.245733 −0.122866 0.992423i \(-0.539209\pi\)
−0.122866 + 0.992423i \(0.539209\pi\)
\(854\) 0 0
\(855\) 9.46410 0.323665
\(856\) 0 0
\(857\) −19.8564 −0.678282 −0.339141 0.940736i \(-0.610136\pi\)
−0.339141 + 0.940736i \(0.610136\pi\)
\(858\) 0 0
\(859\) 18.0000 0.614152 0.307076 0.951685i \(-0.400649\pi\)
0.307076 + 0.951685i \(0.400649\pi\)
\(860\) 0 0
\(861\) 46.6410 1.58952
\(862\) 0 0
\(863\) −4.73205 −0.161081 −0.0805404 0.996751i \(-0.525665\pi\)
−0.0805404 + 0.996751i \(0.525665\pi\)
\(864\) 0 0
\(865\) −24.0000 −0.816024
\(866\) 0 0
\(867\) 29.7128 1.00910
\(868\) 0 0
\(869\) −1.85641 −0.0629743
\(870\) 0 0
\(871\) 2.73205 0.0925720
\(872\) 0 0
\(873\) −14.3923 −0.487106
\(874\) 0 0
\(875\) −32.7846 −1.10832
\(876\) 0 0
\(877\) −16.5359 −0.558378 −0.279189 0.960236i \(-0.590066\pi\)
−0.279189 + 0.960236i \(0.590066\pi\)
\(878\) 0 0
\(879\) 38.1436 1.28655
\(880\) 0 0
\(881\) 21.7128 0.731523 0.365762 0.930709i \(-0.380809\pi\)
0.365762 + 0.930709i \(0.380809\pi\)
\(882\) 0 0
\(883\) −24.5359 −0.825699 −0.412849 0.910799i \(-0.635466\pi\)
−0.412849 + 0.910799i \(0.635466\pi\)
\(884\) 0 0
\(885\) −1.35898 −0.0456817
\(886\) 0 0
\(887\) −18.2487 −0.612732 −0.306366 0.951914i \(-0.599113\pi\)
−0.306366 + 0.951914i \(0.599113\pi\)
\(888\) 0 0
\(889\) −18.9282 −0.634832
\(890\) 0 0
\(891\) 13.9474 0.467257
\(892\) 0 0
\(893\) −8.92820 −0.298771
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) −8.00000 −0.267112
\(898\) 0 0
\(899\) 6.53590 0.217984
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 0 0
\(903\) −70.6410 −2.35079
\(904\) 0 0
\(905\) −17.0718 −0.567486
\(906\) 0 0
\(907\) −54.1051 −1.79653 −0.898265 0.439453i \(-0.855172\pi\)
−0.898265 + 0.439453i \(0.855172\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 31.3205 1.03769 0.518847 0.854867i \(-0.326361\pi\)
0.518847 + 0.854867i \(0.326361\pi\)
\(912\) 0 0
\(913\) 8.53590 0.282497
\(914\) 0 0
\(915\) 75.7128 2.50299
\(916\) 0 0
\(917\) −37.1769 −1.22769
\(918\) 0 0
\(919\) −0.679492 −0.0224144 −0.0112072 0.999937i \(-0.503567\pi\)
−0.0112072 + 0.999937i \(0.503567\pi\)
\(920\) 0 0
\(921\) −5.46410 −0.180048
\(922\) 0 0
\(923\) 2.19615 0.0722872
\(924\) 0 0
\(925\) −34.4974 −1.13427
\(926\) 0 0
\(927\) −6.92820 −0.227552
\(928\) 0 0
\(929\) 27.4641 0.901068 0.450534 0.892759i \(-0.351234\pi\)
0.450534 + 0.892759i \(0.351234\pi\)
\(930\) 0 0
\(931\) 42.0526 1.37822
\(932\) 0 0
\(933\) −29.8564 −0.977455
\(934\) 0 0
\(935\) 6.43078 0.210309
\(936\) 0 0
\(937\) −41.7128 −1.36270 −0.681349 0.731959i \(-0.738606\pi\)
−0.681349 + 0.731959i \(0.738606\pi\)
\(938\) 0 0
\(939\) −40.7846 −1.33096
\(940\) 0 0
\(941\) −16.2487 −0.529693 −0.264846 0.964291i \(-0.585321\pi\)
−0.264846 + 0.964291i \(0.585321\pi\)
\(942\) 0 0
\(943\) 19.7128 0.641938
\(944\) 0 0
\(945\) −65.5692 −2.13297
\(946\) 0 0
\(947\) −10.4449 −0.339412 −0.169706 0.985495i \(-0.554282\pi\)
−0.169706 + 0.985495i \(0.554282\pi\)
\(948\) 0 0
\(949\) 0.535898 0.0173960
\(950\) 0 0
\(951\) 6.92820 0.224662
\(952\) 0 0
\(953\) 4.14359 0.134224 0.0671121 0.997745i \(-0.478621\pi\)
0.0671121 + 0.997745i \(0.478621\pi\)
\(954\) 0 0
\(955\) 74.3538 2.40603
\(956\) 0 0
\(957\) 5.07180 0.163948
\(958\) 0 0
\(959\) −4.39230 −0.141835
\(960\) 0 0
\(961\) −20.3205 −0.655500
\(962\) 0 0
\(963\) −8.92820 −0.287707
\(964\) 0 0
\(965\) −77.5692 −2.49704
\(966\) 0 0
\(967\) 42.9808 1.38217 0.691084 0.722774i \(-0.257133\pi\)
0.691084 + 0.722774i \(0.257133\pi\)
\(968\) 0 0
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) −43.8564 −1.40742 −0.703710 0.710488i \(-0.748474\pi\)
−0.703710 + 0.710488i \(0.748474\pi\)
\(972\) 0 0
\(973\) 47.3205 1.51703
\(974\) 0 0
\(975\) −14.0000 −0.448359
\(976\) 0 0
\(977\) −37.6077 −1.20318 −0.601588 0.798806i \(-0.705465\pi\)
−0.601588 + 0.798806i \(0.705465\pi\)
\(978\) 0 0
\(979\) 21.9615 0.701893
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 5.80385 0.185114 0.0925570 0.995707i \(-0.470496\pi\)
0.0925570 + 0.995707i \(0.470496\pi\)
\(984\) 0 0
\(985\) 58.6410 1.86846
\(986\) 0 0
\(987\) −30.9282 −0.984456
\(988\) 0 0
\(989\) −29.8564 −0.949378
\(990\) 0 0
\(991\) 43.3205 1.37612 0.688061 0.725653i \(-0.258462\pi\)
0.688061 + 0.725653i \(0.258462\pi\)
\(992\) 0 0
\(993\) 55.0333 1.74643
\(994\) 0 0
\(995\) −85.8564 −2.72183
\(996\) 0 0
\(997\) 49.5692 1.56987 0.784936 0.619576i \(-0.212696\pi\)
0.784936 + 0.619576i \(0.212696\pi\)
\(998\) 0 0
\(999\) −19.7128 −0.623686
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.a.m.1.2 2
4.3 odd 2 3328.2.a.bd.1.2 2
8.3 odd 2 3328.2.a.n.1.1 2
8.5 even 2 3328.2.a.bc.1.1 2
16.3 odd 4 104.2.b.b.53.4 yes 4
16.5 even 4 416.2.b.b.209.4 4
16.11 odd 4 104.2.b.b.53.3 4
16.13 even 4 416.2.b.b.209.1 4
48.5 odd 4 3744.2.g.b.1873.2 4
48.11 even 4 936.2.g.b.469.2 4
48.29 odd 4 3744.2.g.b.1873.4 4
48.35 even 4 936.2.g.b.469.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.b.b.53.3 4 16.11 odd 4
104.2.b.b.53.4 yes 4 16.3 odd 4
416.2.b.b.209.1 4 16.13 even 4
416.2.b.b.209.4 4 16.5 even 4
936.2.g.b.469.1 4 48.35 even 4
936.2.g.b.469.2 4 48.11 even 4
3328.2.a.m.1.2 2 1.1 even 1 trivial
3328.2.a.n.1.1 2 8.3 odd 2
3328.2.a.bc.1.1 2 8.5 even 2
3328.2.a.bd.1.2 2 4.3 odd 2
3744.2.g.b.1873.2 4 48.5 odd 4
3744.2.g.b.1873.4 4 48.29 odd 4