Properties

Label 3328.1
Level 3328
Weight 1
Dimension 112
Nonzero newspaces 13
Newform subspaces 33
Sturm bound 688128
Trace bound 41

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 13 \)
Newform subspaces: \( 33 \)
Sturm bound: \(688128\)
Trace bound: \(41\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3328))\).

Total New Old
Modular forms 4568 1256 3312
Cusp forms 344 112 232
Eisenstein series 4224 1144 3080

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 56 8 48 0

Trace form

\( 112 q + O(q^{10}) \) \( 112 q - 24 q^{17} + 20 q^{25} - 4 q^{33} + 8 q^{41} + 4 q^{49} + 24 q^{57} - 24 q^{65} + 8 q^{73} + 32 q^{81} - 4 q^{89} - 4 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3328))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3328.1.c \(\chi_{3328}(3327, \cdot)\) 3328.1.c.a 2 1
3328.1.c.b 2
3328.1.c.c 2
3328.1.c.d 2
3328.1.c.e 2
3328.1.c.f 4
3328.1.d \(\chi_{3328}(1535, \cdot)\) None 0 1
3328.1.g \(\chi_{3328}(3199, \cdot)\) None 0 1
3328.1.h \(\chi_{3328}(1663, \cdot)\) 3328.1.h.a 2 1
3328.1.j \(\chi_{3328}(385, \cdot)\) 3328.1.j.a 2 2
3328.1.j.b 2
3328.1.m \(\chi_{3328}(577, \cdot)\) 3328.1.m.a 4 2
3328.1.m.b 4
3328.1.o \(\chi_{3328}(831, \cdot)\) 3328.1.o.a 4 2
3328.1.o.b 4
3328.1.o.c 4
3328.1.o.d 4
3328.1.q \(\chi_{3328}(703, \cdot)\) None 0 2
3328.1.r \(\chi_{3328}(2241, \cdot)\) 3328.1.r.a 4 2
3328.1.r.b 4
3328.1.t \(\chi_{3328}(2049, \cdot)\) 3328.1.t.a 2 2
3328.1.t.b 2
3328.1.t.c 4
3328.1.t.d 4
3328.1.v \(\chi_{3328}(1407, \cdot)\) 3328.1.v.a 4 2
3328.1.v.b 4
3328.1.v.c 4
3328.1.x \(\chi_{3328}(127, \cdot)\) 3328.1.x.a 4 2
3328.1.y \(\chi_{3328}(511, \cdot)\) 3328.1.y.a 4 2
3328.1.bb \(\chi_{3328}(1023, \cdot)\) 3328.1.bb.a 4 2
3328.1.bb.b 4
3328.1.bb.c 4
3328.1.bc \(\chi_{3328}(801, \cdot)\) None 0 4
3328.1.be \(\chi_{3328}(415, \cdot)\) None 0 4
3328.1.bh \(\chi_{3328}(287, \cdot)\) None 0 4
3328.1.bj \(\chi_{3328}(161, \cdot)\) None 0 4
3328.1.bl \(\chi_{3328}(513, \cdot)\) 3328.1.bl.a 4 4
3328.1.bl.b 4
3328.1.bm \(\chi_{3328}(193, \cdot)\) None 0 4
3328.1.bo \(\chi_{3328}(191, \cdot)\) None 0 4
3328.1.bq \(\chi_{3328}(959, \cdot)\) None 0 4
3328.1.bt \(\chi_{3328}(1857, \cdot)\) None 0 4
3328.1.bv \(\chi_{3328}(2177, \cdot)\) 3328.1.bv.a 4 4
3328.1.bv.b 4
3328.1.bx \(\chi_{3328}(177, \cdot)\) None 0 8
3328.1.bz \(\chi_{3328}(207, \cdot)\) None 0 8
3328.1.ca \(\chi_{3328}(79, \cdot)\) None 0 8
3328.1.cd \(\chi_{3328}(369, \cdot)\) None 0 8
3328.1.ce \(\chi_{3328}(609, \cdot)\) None 0 8
3328.1.cg \(\chi_{3328}(159, \cdot)\) None 0 8
3328.1.cj \(\chi_{3328}(95, \cdot)\) None 0 8
3328.1.cl \(\chi_{3328}(33, \cdot)\) None 0 8
3328.1.cm \(\chi_{3328}(265, \cdot)\) None 0 16
3328.1.co \(\chi_{3328}(103, \cdot)\) None 0 16
3328.1.cq \(\chi_{3328}(183, \cdot)\) None 0 16
3328.1.ct \(\chi_{3328}(57, \cdot)\) None 0 16
3328.1.cu \(\chi_{3328}(305, \cdot)\) None 0 16
3328.1.cw \(\chi_{3328}(303, \cdot)\) None 0 16
3328.1.cz \(\chi_{3328}(367, \cdot)\) None 0 16
3328.1.da \(\chi_{3328}(145, \cdot)\) None 0 16
3328.1.dd \(\chi_{3328}(5, \cdot)\) None 0 32
3328.1.dg \(\chi_{3328}(27, \cdot)\) None 0 32
3328.1.dh \(\chi_{3328}(51, \cdot)\) None 0 32
3328.1.dj \(\chi_{3328}(21, \cdot)\) None 0 32
3328.1.dl \(\chi_{3328}(41, \cdot)\) None 0 32
3328.1.dn \(\chi_{3328}(55, \cdot)\) None 0 32
3328.1.dp \(\chi_{3328}(23, \cdot)\) None 0 32
3328.1.dq \(\chi_{3328}(137, \cdot)\) None 0 32
3328.1.ds \(\chi_{3328}(37, \cdot)\) None 0 64
3328.1.du \(\chi_{3328}(3, \cdot)\) None 0 64
3328.1.dv \(\chi_{3328}(43, \cdot)\) None 0 64
3328.1.dy \(\chi_{3328}(141, \cdot)\) None 0 64

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3328))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(3328)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(832))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1664))\)\(^{\oplus 2}\)