Properties

Label 3312.2.a.r.1.1
Level $3312$
Weight $2$
Character 3312.1
Self dual yes
Analytic conductor $26.446$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3312,2,Mod(1,3312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3312 = 2^{4} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4464531494\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{5} -2.00000 q^{7} -4.00000 q^{11} -5.00000 q^{13} +2.00000 q^{17} -6.00000 q^{19} +1.00000 q^{23} +11.0000 q^{25} -1.00000 q^{29} +9.00000 q^{31} -8.00000 q^{35} -4.00000 q^{37} -3.00000 q^{41} -8.00000 q^{43} -5.00000 q^{47} -3.00000 q^{49} -6.00000 q^{53} -16.0000 q^{55} -4.00000 q^{59} -10.0000 q^{61} -20.0000 q^{65} +4.00000 q^{67} -5.00000 q^{71} -15.0000 q^{73} +8.00000 q^{77} +6.00000 q^{79} +6.00000 q^{83} +8.00000 q^{85} +8.00000 q^{89} +10.0000 q^{91} -24.0000 q^{95} +10.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.00000 −0.729325 −0.364662 0.931140i \(-0.618816\pi\)
−0.364662 + 0.931140i \(0.618816\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −16.0000 −2.15744
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −20.0000 −2.48069
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) 10.0000 1.04828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −24.0000 −2.46235
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21.0000 −1.83478 −0.917389 0.397991i \(-0.869707\pi\)
−0.917389 + 0.397991i \(0.869707\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 20.0000 1.67248
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −11.0000 −0.895167 −0.447584 0.894242i \(-0.647715\pi\)
−0.447584 + 0.894242i \(0.647715\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 36.0000 2.89159
\(156\) 0 0
\(157\) −12.0000 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) −25.0000 −1.95815 −0.979076 0.203497i \(-0.934769\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) −22.0000 −1.66304
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.00000 0.0747435 0.0373718 0.999301i \(-0.488101\pi\)
0.0373718 + 0.999301i \(0.488101\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.0000 −1.17634
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 1.00000 0.0719816 0.0359908 0.999352i \(-0.488541\pi\)
0.0359908 + 0.999352i \(0.488541\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.0000 −1.49619 −0.748094 0.663593i \(-0.769031\pi\)
−0.748094 + 0.663593i \(0.769031\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −32.0000 −2.18238
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.0000 −0.672673
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.0000 −0.929213 −0.464606 0.885517i \(-0.653804\pi\)
−0.464606 + 0.885517i \(0.653804\pi\)
\(228\) 0 0
\(229\) 28.0000 1.85029 0.925146 0.379611i \(-0.123942\pi\)
0.925146 + 0.379611i \(0.123942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) 0 0
\(235\) −20.0000 −1.30466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.00000 −0.0646846 −0.0323423 0.999477i \(-0.510297\pi\)
−0.0323423 + 0.999477i \(0.510297\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.0000 −0.766652
\(246\) 0 0
\(247\) 30.0000 1.90885
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.0000 1.30994 0.654972 0.755653i \(-0.272680\pi\)
0.654972 + 0.755653i \(0.272680\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.0000 1.35658 0.678289 0.734795i \(-0.262722\pi\)
0.678289 + 0.734795i \(0.262722\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −44.0000 −2.65330
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.0000 −1.16841 −0.584206 0.811605i \(-0.698594\pi\)
−0.584206 + 0.811605i \(0.698594\pi\)
\(294\) 0 0
\(295\) −16.0000 −0.931556
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.00000 −0.289157
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −40.0000 −2.29039
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.0000 −1.19080 −0.595400 0.803429i \(-0.703007\pi\)
−0.595400 + 0.803429i \(0.703007\pi\)
\(312\) 0 0
\(313\) 20.0000 1.13047 0.565233 0.824931i \(-0.308786\pi\)
0.565233 + 0.824931i \(0.308786\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −55.0000 −3.05085
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.0000 0.551318
\(330\) 0 0
\(331\) 23.0000 1.26419 0.632097 0.774889i \(-0.282194\pi\)
0.632097 + 0.774889i \(0.282194\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) −16.0000 −0.871576 −0.435788 0.900049i \(-0.643530\pi\)
−0.435788 + 0.900049i \(0.643530\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −36.0000 −1.94951
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −60.0000 −3.14054
\(366\) 0 0
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −8.00000 −0.414224 −0.207112 0.978317i \(-0.566407\pi\)
−0.207112 + 0.978317i \(0.566407\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 32.0000 1.63087
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −20.0000 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 24.0000 1.20757
\(396\) 0 0
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 0 0
\(403\) −45.0000 −2.24161
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.0000 0.793091
\(408\) 0 0
\(409\) 17.0000 0.840596 0.420298 0.907386i \(-0.361926\pi\)
0.420298 + 0.907386i \(0.361926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 22.0000 1.06716
\(426\) 0 0
\(427\) 20.0000 0.967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) 4.00000 0.192228 0.0961139 0.995370i \(-0.469359\pi\)
0.0961139 + 0.995370i \(0.469359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.00000 −0.237557 −0.118779 0.992921i \(-0.537898\pi\)
−0.118779 + 0.992921i \(0.537898\pi\)
\(444\) 0 0
\(445\) 32.0000 1.51695
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 40.0000 1.87523
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.00000 0.326023 0.163011 0.986624i \(-0.447879\pi\)
0.163011 + 0.986624i \(0.447879\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.0000 1.01804 0.509019 0.860755i \(-0.330008\pi\)
0.509019 + 0.860755i \(0.330008\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 32.0000 1.47136
\(474\) 0 0
\(475\) −66.0000 −3.02829
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.0000 0.822441 0.411220 0.911536i \(-0.365103\pi\)
0.411220 + 0.911536i \(0.365103\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 40.0000 1.81631
\(486\) 0 0
\(487\) 11.0000 0.498458 0.249229 0.968445i \(-0.419823\pi\)
0.249229 + 0.968445i \(0.419823\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.0000 −0.496423 −0.248212 0.968706i \(-0.579843\pi\)
−0.248212 + 0.968706i \(0.579843\pi\)
\(492\) 0 0
\(493\) −2.00000 −0.0900755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.0000 0.448561
\(498\) 0 0
\(499\) −11.0000 −0.492428 −0.246214 0.969216i \(-0.579187\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.0000 −0.980932 −0.490466 0.871460i \(-0.663173\pi\)
−0.490466 + 0.871460i \(0.663173\pi\)
\(504\) 0 0
\(505\) 40.0000 1.77998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −33.0000 −1.46270 −0.731350 0.682003i \(-0.761109\pi\)
−0.731350 + 0.682003i \(0.761109\pi\)
\(510\) 0 0
\(511\) 30.0000 1.32712
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −40.0000 −1.76261
\(516\) 0 0
\(517\) 20.0000 0.879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.0000 0.784092
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15.0000 0.649722
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −3.00000 −0.128980 −0.0644900 0.997918i \(-0.520542\pi\)
−0.0644900 + 0.997918i \(0.520542\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −9.00000 −0.384812 −0.192406 0.981315i \(-0.561629\pi\)
−0.192406 + 0.981315i \(0.561629\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −12.0000 −0.510292
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 40.0000 1.69182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) −24.0000 −1.00969
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.00000 0.167689 0.0838444 0.996479i \(-0.473280\pi\)
0.0838444 + 0.996479i \(0.473280\pi\)
\(570\) 0 0
\(571\) 26.0000 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.0000 0.458732
\(576\) 0 0
\(577\) −39.0000 −1.62359 −0.811796 0.583942i \(-0.801510\pi\)
−0.811796 + 0.583942i \(0.801510\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.0000 −0.536567 −0.268284 0.963340i \(-0.586456\pi\)
−0.268284 + 0.963340i \(0.586456\pi\)
\(588\) 0 0
\(589\) −54.0000 −2.22503
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.00000 0.0821302 0.0410651 0.999156i \(-0.486925\pi\)
0.0410651 + 0.999156i \(0.486925\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) 29.0000 1.18293 0.591467 0.806329i \(-0.298549\pi\)
0.591467 + 0.806329i \(0.298549\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20.0000 0.813116
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.0000 1.01139
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.0000 −0.641026
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.0000 1.11115
\(636\) 0 0
\(637\) 15.0000 0.594322
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 48.0000 1.89589 0.947943 0.318440i \(-0.103159\pi\)
0.947943 + 0.318440i \(0.103159\pi\)
\(642\) 0 0
\(643\) 8.00000 0.315489 0.157745 0.987480i \(-0.449578\pi\)
0.157745 + 0.987480i \(0.449578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.0000 0.432455 0.216227 0.976343i \(-0.430625\pi\)
0.216227 + 0.976343i \(0.430625\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 0.352197 0.176099 0.984373i \(-0.443652\pi\)
0.176099 + 0.984373i \(0.443652\pi\)
\(654\) 0 0
\(655\) −84.0000 −3.28215
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −26.0000 −1.01282 −0.506408 0.862294i \(-0.669027\pi\)
−0.506408 + 0.862294i \(0.669027\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 48.0000 1.86136
\(666\) 0 0
\(667\) −1.00000 −0.0387202
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 43.0000 1.65753 0.828764 0.559598i \(-0.189045\pi\)
0.828764 + 0.559598i \(0.189045\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −31.0000 −1.18618 −0.593091 0.805135i \(-0.702093\pi\)
−0.593091 + 0.805135i \(0.702093\pi\)
\(684\) 0 0
\(685\) −16.0000 −0.611329
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 30.0000 1.14291
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.0000 −0.752177
\(708\) 0 0
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.00000 0.337053
\(714\) 0 0
\(715\) 80.0000 2.99183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.0000 −0.408530
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) 7.00000 0.257499 0.128750 0.991677i \(-0.458904\pi\)
0.128750 + 0.991677i \(0.458904\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18.0000 −0.660356 −0.330178 0.943919i \(-0.607109\pi\)
−0.330178 + 0.943919i \(0.607109\pi\)
\(744\) 0 0
\(745\) 72.0000 2.63788
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −44.0000 −1.60132
\(756\) 0 0
\(757\) 24.0000 0.872295 0.436147 0.899875i \(-0.356343\pi\)
0.436147 + 0.899875i \(0.356343\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.0000 −0.906249 −0.453125 0.891447i \(-0.649691\pi\)
−0.453125 + 0.891447i \(0.649691\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.0000 0.722158
\(768\) 0 0
\(769\) 8.00000 0.288487 0.144244 0.989542i \(-0.453925\pi\)
0.144244 + 0.989542i \(0.453925\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 48.0000 1.72644 0.863220 0.504828i \(-0.168444\pi\)
0.863220 + 0.504828i \(0.168444\pi\)
\(774\) 0 0
\(775\) 99.0000 3.55618
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.0000 0.644917
\(780\) 0 0
\(781\) 20.0000 0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −48.0000 −1.71319
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 50.0000 1.77555
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −10.0000 −0.353775
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 60.0000 2.11735
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −100.000 −3.50285
\(816\) 0 0
\(817\) 48.0000 1.67931
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) 5.00000 0.174289 0.0871445 0.996196i \(-0.472226\pi\)
0.0871445 + 0.996196i \(0.472226\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 48.0000 1.66111
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.00000 −0.207143 −0.103572 0.994622i \(-0.533027\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 48.0000 1.65125
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.00000 0.0341593 0.0170797 0.999854i \(-0.494563\pi\)
0.0170797 + 0.999854i \(0.494563\pi\)
\(858\) 0 0
\(859\) −35.0000 −1.19418 −0.597092 0.802173i \(-0.703677\pi\)
−0.597092 + 0.802173i \(0.703677\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.0000 0.714848 0.357424 0.933942i \(-0.383655\pi\)
0.357424 + 0.933942i \(0.383655\pi\)
\(864\) 0 0
\(865\) 8.00000 0.272008
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.0000 0.503651 0.251825 0.967773i \(-0.418969\pi\)
0.251825 + 0.967773i \(0.418969\pi\)
\(888\) 0 0
\(889\) −14.0000 −0.469545
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 30.0000 1.00391
\(894\) 0 0
\(895\) 4.00000 0.133705
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.00000 −0.300167
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −48.0000 −1.59557
\(906\) 0 0
\(907\) −14.0000 −0.464862 −0.232431 0.972613i \(-0.574668\pi\)
−0.232431 + 0.972613i \(0.574668\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −42.0000 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(912\) 0 0
\(913\) −24.0000 −0.794284
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 42.0000 1.38696
\(918\) 0 0
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 25.0000 0.822885
\(924\) 0 0
\(925\) −44.0000 −1.44671
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 49.0000 1.60764 0.803819 0.594874i \(-0.202798\pi\)
0.803819 + 0.594874i \(0.202798\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −32.0000 −1.04651
\(936\) 0 0
\(937\) −32.0000 −1.04539 −0.522697 0.852518i \(-0.675074\pi\)
−0.522697 + 0.852518i \(0.675074\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) −3.00000 −0.0976934
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.0000 0.617417 0.308709 0.951157i \(-0.400103\pi\)
0.308709 + 0.951157i \(0.400103\pi\)
\(948\) 0 0
\(949\) 75.0000 2.43460
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 0 0
\(955\) 48.0000 1.55324
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.00000 0.258333
\(960\) 0 0
\(961\) 50.0000 1.61290
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.00000 0.128765
\(966\) 0 0
\(967\) −37.0000 −1.18984 −0.594920 0.803785i \(-0.702816\pi\)
−0.594920 + 0.803785i \(0.702816\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −36.0000 −1.15174 −0.575871 0.817541i \(-0.695337\pi\)
−0.575871 + 0.817541i \(0.695337\pi\)
\(978\) 0 0
\(979\) −32.0000 −1.02272
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.0000 −0.701691 −0.350846 0.936433i \(-0.614106\pi\)
−0.350846 + 0.936433i \(0.614106\pi\)
\(984\) 0 0
\(985\) −84.0000 −2.67646
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −64.0000 −2.02894
\(996\) 0 0
\(997\) −58.0000 −1.83688 −0.918439 0.395562i \(-0.870550\pi\)
−0.918439 + 0.395562i \(0.870550\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3312.2.a.r.1.1 1
3.2 odd 2 368.2.a.e.1.1 1
4.3 odd 2 1656.2.a.i.1.1 1
12.11 even 2 184.2.a.a.1.1 1
15.14 odd 2 9200.2.a.o.1.1 1
24.5 odd 2 1472.2.a.e.1.1 1
24.11 even 2 1472.2.a.l.1.1 1
60.23 odd 4 4600.2.e.e.4049.1 2
60.47 odd 4 4600.2.e.e.4049.2 2
60.59 even 2 4600.2.a.i.1.1 1
69.68 even 2 8464.2.a.p.1.1 1
84.83 odd 2 9016.2.a.k.1.1 1
276.275 odd 2 4232.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.a.a.1.1 1 12.11 even 2
368.2.a.e.1.1 1 3.2 odd 2
1472.2.a.e.1.1 1 24.5 odd 2
1472.2.a.l.1.1 1 24.11 even 2
1656.2.a.i.1.1 1 4.3 odd 2
3312.2.a.r.1.1 1 1.1 even 1 trivial
4232.2.a.f.1.1 1 276.275 odd 2
4600.2.a.i.1.1 1 60.59 even 2
4600.2.e.e.4049.1 2 60.23 odd 4
4600.2.e.e.4049.2 2 60.47 odd 4
8464.2.a.p.1.1 1 69.68 even 2
9016.2.a.k.1.1 1 84.83 odd 2
9200.2.a.o.1.1 1 15.14 odd 2