Properties

Label 3312.2.a.bb.1.1
Level $3312$
Weight $2$
Character 3312.1
Self dual yes
Analytic conductor $26.446$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3312,2,Mod(1,3312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3312 = 2^{4} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4464531494\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 3312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23607 q^{5} -3.23607 q^{7} +4.00000 q^{11} -4.47214 q^{13} +2.76393 q^{17} -7.23607 q^{19} +1.00000 q^{23} -3.47214 q^{25} -4.47214 q^{29} +6.47214 q^{31} +4.00000 q^{35} +4.47214 q^{37} +10.9443 q^{41} +5.70820 q^{43} -4.00000 q^{47} +3.47214 q^{49} +5.23607 q^{53} -4.94427 q^{55} -4.94427 q^{59} +4.47214 q^{61} +5.52786 q^{65} -0.763932 q^{67} -8.00000 q^{71} +6.94427 q^{73} -12.9443 q^{77} -9.70820 q^{79} +4.00000 q^{83} -3.41641 q^{85} +1.23607 q^{89} +14.4721 q^{91} +8.94427 q^{95} +8.47214 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7} + 8 q^{11} + 10 q^{17} - 10 q^{19} + 2 q^{23} + 2 q^{25} + 4 q^{31} + 8 q^{35} + 4 q^{41} - 2 q^{43} - 8 q^{47} - 2 q^{49} + 6 q^{53} + 8 q^{55} + 8 q^{59} + 20 q^{65} - 6 q^{67}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) 0 0
\(7\) −3.23607 −1.22312 −0.611559 0.791199i \(-0.709457\pi\)
−0.611559 + 0.791199i \(0.709457\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −4.47214 −1.24035 −0.620174 0.784465i \(-0.712938\pi\)
−0.620174 + 0.784465i \(0.712938\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.76393 0.670352 0.335176 0.942156i \(-0.391204\pi\)
0.335176 + 0.942156i \(0.391204\pi\)
\(18\) 0 0
\(19\) −7.23607 −1.66007 −0.830034 0.557713i \(-0.811679\pi\)
−0.830034 + 0.557713i \(0.811679\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) −3.47214 −0.694427
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) 0 0
\(31\) 6.47214 1.16243 0.581215 0.813750i \(-0.302578\pi\)
0.581215 + 0.813750i \(0.302578\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 4.47214 0.735215 0.367607 0.929981i \(-0.380177\pi\)
0.367607 + 0.929981i \(0.380177\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.9443 1.70921 0.854604 0.519280i \(-0.173800\pi\)
0.854604 + 0.519280i \(0.173800\pi\)
\(42\) 0 0
\(43\) 5.70820 0.870493 0.435246 0.900311i \(-0.356661\pi\)
0.435246 + 0.900311i \(0.356661\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.23607 0.719229 0.359615 0.933101i \(-0.382908\pi\)
0.359615 + 0.933101i \(0.382908\pi\)
\(54\) 0 0
\(55\) −4.94427 −0.666685
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.94427 −0.643689 −0.321845 0.946792i \(-0.604303\pi\)
−0.321845 + 0.946792i \(0.604303\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.52786 0.685647
\(66\) 0 0
\(67\) −0.763932 −0.0933292 −0.0466646 0.998911i \(-0.514859\pi\)
−0.0466646 + 0.998911i \(0.514859\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 6.94427 0.812766 0.406383 0.913703i \(-0.366790\pi\)
0.406383 + 0.913703i \(0.366790\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.9443 −1.47514
\(78\) 0 0
\(79\) −9.70820 −1.09226 −0.546129 0.837701i \(-0.683899\pi\)
−0.546129 + 0.837701i \(0.683899\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −3.41641 −0.370561
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.23607 0.131023 0.0655115 0.997852i \(-0.479132\pi\)
0.0655115 + 0.997852i \(0.479132\pi\)
\(90\) 0 0
\(91\) 14.4721 1.51709
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.94427 0.917663
\(96\) 0 0
\(97\) 8.47214 0.860215 0.430108 0.902778i \(-0.358476\pi\)
0.430108 + 0.902778i \(0.358476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.94427 0.690981 0.345490 0.938422i \(-0.387713\pi\)
0.345490 + 0.938422i \(0.387713\pi\)
\(102\) 0 0
\(103\) 11.2361 1.10712 0.553561 0.832808i \(-0.313268\pi\)
0.553561 + 0.832808i \(0.313268\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.9443 1.63806 0.819032 0.573747i \(-0.194511\pi\)
0.819032 + 0.573747i \(0.194511\pi\)
\(108\) 0 0
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.18034 0.581397 0.290699 0.956815i \(-0.406112\pi\)
0.290699 + 0.956815i \(0.406112\pi\)
\(114\) 0 0
\(115\) −1.23607 −0.115264
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.94427 −0.819920
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.4721 0.936656
\(126\) 0 0
\(127\) −1.52786 −0.135576 −0.0677880 0.997700i \(-0.521594\pi\)
−0.0677880 + 0.997700i \(0.521594\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.9443 1.48043 0.740214 0.672371i \(-0.234724\pi\)
0.740214 + 0.672371i \(0.234724\pi\)
\(132\) 0 0
\(133\) 23.4164 2.03046
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.23607 0.105604 0.0528022 0.998605i \(-0.483185\pi\)
0.0528022 + 0.998605i \(0.483185\pi\)
\(138\) 0 0
\(139\) 8.94427 0.758643 0.379322 0.925265i \(-0.376157\pi\)
0.379322 + 0.925265i \(0.376157\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −17.8885 −1.49592
\(144\) 0 0
\(145\) 5.52786 0.459064
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.7082 0.959173 0.479587 0.877494i \(-0.340787\pi\)
0.479587 + 0.877494i \(0.340787\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −3.52786 −0.281554 −0.140777 0.990041i \(-0.544960\pi\)
−0.140777 + 0.990041i \(0.544960\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.23607 −0.255038
\(162\) 0 0
\(163\) −7.41641 −0.580898 −0.290449 0.956890i \(-0.593805\pi\)
−0.290449 + 0.956890i \(0.593805\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.9443 1.00166 0.500829 0.865546i \(-0.333029\pi\)
0.500829 + 0.865546i \(0.333029\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.47214 −0.340010 −0.170005 0.985443i \(-0.554378\pi\)
−0.170005 + 0.985443i \(0.554378\pi\)
\(174\) 0 0
\(175\) 11.2361 0.849367
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.9443 1.56545 0.782724 0.622369i \(-0.213830\pi\)
0.782724 + 0.622369i \(0.213830\pi\)
\(180\) 0 0
\(181\) −11.8885 −0.883669 −0.441834 0.897097i \(-0.645672\pi\)
−0.441834 + 0.897097i \(0.645672\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.52786 −0.406417
\(186\) 0 0
\(187\) 11.0557 0.808475
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.52786 0.110552 0.0552762 0.998471i \(-0.482396\pi\)
0.0552762 + 0.998471i \(0.482396\pi\)
\(192\) 0 0
\(193\) 17.4164 1.25366 0.626830 0.779156i \(-0.284352\pi\)
0.626830 + 0.779156i \(0.284352\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.4164 −1.24087 −0.620434 0.784259i \(-0.713043\pi\)
−0.620434 + 0.784259i \(0.713043\pi\)
\(198\) 0 0
\(199\) −9.70820 −0.688196 −0.344098 0.938934i \(-0.611815\pi\)
−0.344098 + 0.938934i \(0.611815\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.4721 1.01574
\(204\) 0 0
\(205\) −13.5279 −0.944827
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −28.9443 −2.00212
\(210\) 0 0
\(211\) −13.5279 −0.931297 −0.465648 0.884970i \(-0.654179\pi\)
−0.465648 + 0.884970i \(0.654179\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.05573 −0.481197
\(216\) 0 0
\(217\) −20.9443 −1.42179
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.3607 −0.831469
\(222\) 0 0
\(223\) 25.8885 1.73363 0.866813 0.498634i \(-0.166165\pi\)
0.866813 + 0.498634i \(0.166165\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.5279 −0.897876 −0.448938 0.893563i \(-0.648198\pi\)
−0.448938 + 0.893563i \(0.648198\pi\)
\(228\) 0 0
\(229\) 2.94427 0.194563 0.0972815 0.995257i \(-0.468985\pi\)
0.0972815 + 0.995257i \(0.468985\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) 4.94427 0.322529
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.94427 0.319818 0.159909 0.987132i \(-0.448880\pi\)
0.159909 + 0.987132i \(0.448880\pi\)
\(240\) 0 0
\(241\) 19.5279 1.25790 0.628950 0.777446i \(-0.283485\pi\)
0.628950 + 0.777446i \(0.283485\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.29180 −0.274193
\(246\) 0 0
\(247\) 32.3607 2.05906
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10.4721 −0.660995 −0.330498 0.943807i \(-0.607217\pi\)
−0.330498 + 0.943807i \(0.607217\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) −14.4721 −0.899255
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.47214 0.399089 0.199544 0.979889i \(-0.436054\pi\)
0.199544 + 0.979889i \(0.436054\pi\)
\(264\) 0 0
\(265\) −6.47214 −0.397580
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.472136 0.0287866 0.0143933 0.999896i \(-0.495418\pi\)
0.0143933 + 0.999896i \(0.495418\pi\)
\(270\) 0 0
\(271\) 17.5279 1.06474 0.532371 0.846511i \(-0.321301\pi\)
0.532371 + 0.846511i \(0.321301\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.8885 −0.837511
\(276\) 0 0
\(277\) 15.8885 0.954650 0.477325 0.878727i \(-0.341606\pi\)
0.477325 + 0.878727i \(0.341606\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.6525 −1.47064 −0.735322 0.677718i \(-0.762969\pi\)
−0.735322 + 0.677718i \(0.762969\pi\)
\(282\) 0 0
\(283\) −5.70820 −0.339318 −0.169659 0.985503i \(-0.554267\pi\)
−0.169659 + 0.985503i \(0.554267\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −35.4164 −2.09056
\(288\) 0 0
\(289\) −9.36068 −0.550628
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.70820 −0.450318 −0.225159 0.974322i \(-0.572290\pi\)
−0.225159 + 0.974322i \(0.572290\pi\)
\(294\) 0 0
\(295\) 6.11146 0.355823
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.47214 −0.258630
\(300\) 0 0
\(301\) −18.4721 −1.06472
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.52786 −0.316525
\(306\) 0 0
\(307\) −2.47214 −0.141092 −0.0705461 0.997509i \(-0.522474\pi\)
−0.0705461 + 0.997509i \(0.522474\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.05573 0.400094 0.200047 0.979786i \(-0.435891\pi\)
0.200047 + 0.979786i \(0.435891\pi\)
\(312\) 0 0
\(313\) 5.05573 0.285767 0.142883 0.989740i \(-0.454363\pi\)
0.142883 + 0.989740i \(0.454363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.58359 −0.145109 −0.0725545 0.997364i \(-0.523115\pi\)
−0.0725545 + 0.997364i \(0.523115\pi\)
\(318\) 0 0
\(319\) −17.8885 −1.00157
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) 15.5279 0.861331
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) −23.4164 −1.28708 −0.643541 0.765412i \(-0.722535\pi\)
−0.643541 + 0.765412i \(0.722535\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.944272 0.0515911
\(336\) 0 0
\(337\) −14.3607 −0.782276 −0.391138 0.920332i \(-0.627918\pi\)
−0.391138 + 0.920332i \(0.627918\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 25.8885 1.40194
\(342\) 0 0
\(343\) 11.4164 0.616428
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.88854 −0.530845 −0.265422 0.964132i \(-0.585511\pi\)
−0.265422 + 0.964132i \(0.585511\pi\)
\(348\) 0 0
\(349\) −23.5279 −1.25942 −0.629709 0.776831i \(-0.716826\pi\)
−0.629709 + 0.776831i \(0.716826\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.4164 0.926982 0.463491 0.886102i \(-0.346597\pi\)
0.463491 + 0.886102i \(0.346597\pi\)
\(354\) 0 0
\(355\) 9.88854 0.524829
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.47214 0.341586 0.170793 0.985307i \(-0.445367\pi\)
0.170793 + 0.985307i \(0.445367\pi\)
\(360\) 0 0
\(361\) 33.3607 1.75583
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.58359 −0.449286
\(366\) 0 0
\(367\) −25.7082 −1.34196 −0.670979 0.741477i \(-0.734126\pi\)
−0.670979 + 0.741477i \(0.734126\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.9443 −0.879703
\(372\) 0 0
\(373\) 20.4721 1.06001 0.530004 0.847995i \(-0.322191\pi\)
0.530004 + 0.847995i \(0.322191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.0000 1.03005
\(378\) 0 0
\(379\) −30.0689 −1.54453 −0.772267 0.635298i \(-0.780877\pi\)
−0.772267 + 0.635298i \(0.780877\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 25.5279 1.30441 0.652206 0.758041i \(-0.273844\pi\)
0.652206 + 0.758041i \(0.273844\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −20.6525 −1.04712 −0.523561 0.851988i \(-0.675397\pi\)
−0.523561 + 0.851988i \(0.675397\pi\)
\(390\) 0 0
\(391\) 2.76393 0.139778
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −20.0689 −1.00219 −0.501096 0.865392i \(-0.667070\pi\)
−0.501096 + 0.865392i \(0.667070\pi\)
\(402\) 0 0
\(403\) −28.9443 −1.44182
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.8885 0.886702
\(408\) 0 0
\(409\) 17.4164 0.861186 0.430593 0.902546i \(-0.358304\pi\)
0.430593 + 0.902546i \(0.358304\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) −4.94427 −0.242705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.8885 0.678500 0.339250 0.940696i \(-0.389827\pi\)
0.339250 + 0.940696i \(0.389827\pi\)
\(420\) 0 0
\(421\) −30.9443 −1.50813 −0.754066 0.656799i \(-0.771910\pi\)
−0.754066 + 0.656799i \(0.771910\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.59675 −0.465511
\(426\) 0 0
\(427\) −14.4721 −0.700356
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 27.8885 1.34024 0.670119 0.742254i \(-0.266243\pi\)
0.670119 + 0.742254i \(0.266243\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.23607 −0.346148
\(438\) 0 0
\(439\) 9.88854 0.471954 0.235977 0.971759i \(-0.424171\pi\)
0.235977 + 0.971759i \(0.424171\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.8328 −1.65496 −0.827479 0.561497i \(-0.810225\pi\)
−0.827479 + 0.561497i \(0.810225\pi\)
\(444\) 0 0
\(445\) −1.52786 −0.0724277
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −14.9443 −0.705264 −0.352632 0.935762i \(-0.614713\pi\)
−0.352632 + 0.935762i \(0.614713\pi\)
\(450\) 0 0
\(451\) 43.7771 2.06138
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.8885 −0.838628
\(456\) 0 0
\(457\) 8.47214 0.396310 0.198155 0.980171i \(-0.436505\pi\)
0.198155 + 0.980171i \(0.436505\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.41641 0.252267 0.126134 0.992013i \(-0.459743\pi\)
0.126134 + 0.992013i \(0.459743\pi\)
\(462\) 0 0
\(463\) 12.9443 0.601571 0.300786 0.953692i \(-0.402751\pi\)
0.300786 + 0.953692i \(0.402751\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.3607 0.942180 0.471090 0.882085i \(-0.343861\pi\)
0.471090 + 0.882085i \(0.343861\pi\)
\(468\) 0 0
\(469\) 2.47214 0.114153
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 22.8328 1.04985
\(474\) 0 0
\(475\) 25.1246 1.15280
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −33.8885 −1.54841 −0.774204 0.632937i \(-0.781849\pi\)
−0.774204 + 0.632937i \(0.781849\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.4721 −0.475515
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 40.0000 1.80517 0.902587 0.430507i \(-0.141665\pi\)
0.902587 + 0.430507i \(0.141665\pi\)
\(492\) 0 0
\(493\) −12.3607 −0.556697
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.8885 1.16126
\(498\) 0 0
\(499\) 12.3607 0.553340 0.276670 0.960965i \(-0.410769\pi\)
0.276670 + 0.960965i \(0.410769\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.0557 −0.849653 −0.424826 0.905275i \(-0.639665\pi\)
−0.424826 + 0.905275i \(0.639665\pi\)
\(504\) 0 0
\(505\) −8.58359 −0.381965
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.4721 0.730115 0.365057 0.930985i \(-0.381049\pi\)
0.365057 + 0.930985i \(0.381049\pi\)
\(510\) 0 0
\(511\) −22.4721 −0.994109
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.8885 −0.612002
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.2361 1.45610 0.728049 0.685525i \(-0.240427\pi\)
0.728049 + 0.685525i \(0.240427\pi\)
\(522\) 0 0
\(523\) −15.5967 −0.681998 −0.340999 0.940064i \(-0.610765\pi\)
−0.340999 + 0.940064i \(0.610765\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.8885 0.779237
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −48.9443 −2.12001
\(534\) 0 0
\(535\) −20.9443 −0.905500
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.8885 0.598222
\(540\) 0 0
\(541\) −15.5279 −0.667595 −0.333798 0.942645i \(-0.608330\pi\)
−0.333798 + 0.942645i \(0.608330\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 18.4721 0.791259
\(546\) 0 0
\(547\) −13.5279 −0.578410 −0.289205 0.957267i \(-0.593391\pi\)
−0.289205 + 0.957267i \(0.593391\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 32.3607 1.37861
\(552\) 0 0
\(553\) 31.4164 1.33596
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.1803 1.78724 0.893619 0.448826i \(-0.148158\pi\)
0.893619 + 0.448826i \(0.148158\pi\)
\(558\) 0 0
\(559\) −25.5279 −1.07971
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.41641 −0.312564 −0.156282 0.987712i \(-0.549951\pi\)
−0.156282 + 0.987712i \(0.549951\pi\)
\(564\) 0 0
\(565\) −7.63932 −0.321389
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.7639 0.451248 0.225624 0.974215i \(-0.427558\pi\)
0.225624 + 0.974215i \(0.427558\pi\)
\(570\) 0 0
\(571\) −29.7082 −1.24325 −0.621625 0.783315i \(-0.713527\pi\)
−0.621625 + 0.783315i \(0.713527\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.47214 −0.144798
\(576\) 0 0
\(577\) 7.52786 0.313389 0.156695 0.987647i \(-0.449916\pi\)
0.156695 + 0.987647i \(0.449916\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.9443 −0.537019
\(582\) 0 0
\(583\) 20.9443 0.867423
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.944272 −0.0389743 −0.0194871 0.999810i \(-0.506203\pi\)
−0.0194871 + 0.999810i \(0.506203\pi\)
\(588\) 0 0
\(589\) −46.8328 −1.92971
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) 11.0557 0.453241
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.05573 −0.124854 −0.0624268 0.998050i \(-0.519884\pi\)
−0.0624268 + 0.998050i \(0.519884\pi\)
\(600\) 0 0
\(601\) −42.3607 −1.72793 −0.863964 0.503553i \(-0.832026\pi\)
−0.863964 + 0.503553i \(0.832026\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.18034 −0.251267
\(606\) 0 0
\(607\) 14.8328 0.602045 0.301023 0.953617i \(-0.402672\pi\)
0.301023 + 0.953617i \(0.402672\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.8885 0.723693
\(612\) 0 0
\(613\) −40.4721 −1.63465 −0.817327 0.576174i \(-0.804545\pi\)
−0.817327 + 0.576174i \(0.804545\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.2918 0.816917 0.408458 0.912777i \(-0.366066\pi\)
0.408458 + 0.912777i \(0.366066\pi\)
\(618\) 0 0
\(619\) 9.12461 0.366749 0.183375 0.983043i \(-0.441298\pi\)
0.183375 + 0.983043i \(0.441298\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.3607 0.492853
\(630\) 0 0
\(631\) 16.1803 0.644129 0.322065 0.946718i \(-0.395623\pi\)
0.322065 + 0.946718i \(0.395623\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.88854 0.0749446
\(636\) 0 0
\(637\) −15.5279 −0.615236
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −49.0132 −1.93590 −0.967952 0.251137i \(-0.919196\pi\)
−0.967952 + 0.251137i \(0.919196\pi\)
\(642\) 0 0
\(643\) −38.0689 −1.50129 −0.750645 0.660706i \(-0.770257\pi\)
−0.750645 + 0.660706i \(0.770257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −19.7771 −0.776319
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.9443 0.897879 0.448939 0.893562i \(-0.351802\pi\)
0.448939 + 0.893562i \(0.351802\pi\)
\(654\) 0 0
\(655\) −20.9443 −0.818360
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.3607 1.41641 0.708205 0.706006i \(-0.249505\pi\)
0.708205 + 0.706006i \(0.249505\pi\)
\(660\) 0 0
\(661\) −11.5279 −0.448382 −0.224191 0.974545i \(-0.571974\pi\)
−0.224191 + 0.974545i \(0.571974\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −28.9443 −1.12241
\(666\) 0 0
\(667\) −4.47214 −0.173162
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.8885 0.690580
\(672\) 0 0
\(673\) 2.58359 0.0995902 0.0497951 0.998759i \(-0.484143\pi\)
0.0497951 + 0.998759i \(0.484143\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.4853 1.82501 0.912504 0.409068i \(-0.134146\pi\)
0.912504 + 0.409068i \(0.134146\pi\)
\(678\) 0 0
\(679\) −27.4164 −1.05215
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) −1.52786 −0.0583767
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23.4164 −0.892094
\(690\) 0 0
\(691\) −4.36068 −0.165888 −0.0829440 0.996554i \(-0.526432\pi\)
−0.0829440 + 0.996554i \(0.526432\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.0557 −0.419368
\(696\) 0 0
\(697\) 30.2492 1.14577
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.2361 −0.953153 −0.476577 0.879133i \(-0.658122\pi\)
−0.476577 + 0.879133i \(0.658122\pi\)
\(702\) 0 0
\(703\) −32.3607 −1.22051
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.4721 −0.845152
\(708\) 0 0
\(709\) −32.8328 −1.23306 −0.616531 0.787331i \(-0.711463\pi\)
−0.616531 + 0.787331i \(0.711463\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.47214 0.242383
\(714\) 0 0
\(715\) 22.1115 0.826922
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.00000 0.149175 0.0745874 0.997214i \(-0.476236\pi\)
0.0745874 + 0.997214i \(0.476236\pi\)
\(720\) 0 0
\(721\) −36.3607 −1.35414
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.5279 0.576690
\(726\) 0 0
\(727\) −1.34752 −0.0499769 −0.0249885 0.999688i \(-0.507955\pi\)
−0.0249885 + 0.999688i \(0.507955\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.7771 0.583537
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.05573 −0.112559
\(738\) 0 0
\(739\) 26.8328 0.987061 0.493531 0.869728i \(-0.335706\pi\)
0.493531 + 0.869728i \(0.335706\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.3607 −0.893707 −0.446853 0.894607i \(-0.647455\pi\)
−0.446853 + 0.894607i \(0.647455\pi\)
\(744\) 0 0
\(745\) −14.4721 −0.530218
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −54.8328 −2.00355
\(750\) 0 0
\(751\) −50.0689 −1.82704 −0.913520 0.406794i \(-0.866647\pi\)
−0.913520 + 0.406794i \(0.866647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −19.7771 −0.719762
\(756\) 0 0
\(757\) 39.8885 1.44977 0.724887 0.688868i \(-0.241892\pi\)
0.724887 + 0.688868i \(0.241892\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −42.3607 −1.53557 −0.767787 0.640706i \(-0.778642\pi\)
−0.767787 + 0.640706i \(0.778642\pi\)
\(762\) 0 0
\(763\) 48.3607 1.75077
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.1115 0.798398
\(768\) 0 0
\(769\) 16.8328 0.607007 0.303503 0.952830i \(-0.401844\pi\)
0.303503 + 0.952830i \(0.401844\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −36.2918 −1.30533 −0.652663 0.757649i \(-0.726348\pi\)
−0.652663 + 0.757649i \(0.726348\pi\)
\(774\) 0 0
\(775\) −22.4721 −0.807223
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −79.1935 −2.83740
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.36068 0.155639
\(786\) 0 0
\(787\) 13.7082 0.488645 0.244322 0.969694i \(-0.421434\pi\)
0.244322 + 0.969694i \(0.421434\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.0000 −0.711118
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.6525 −0.448174 −0.224087 0.974569i \(-0.571940\pi\)
−0.224087 + 0.974569i \(0.571940\pi\)
\(798\) 0 0
\(799\) −11.0557 −0.391124
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 27.7771 0.980232
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.3050 1.52252 0.761261 0.648446i \(-0.224581\pi\)
0.761261 + 0.648446i \(0.224581\pi\)
\(810\) 0 0
\(811\) 23.4164 0.822261 0.411131 0.911576i \(-0.365134\pi\)
0.411131 + 0.911576i \(0.365134\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.16718 0.321112
\(816\) 0 0
\(817\) −41.3050 −1.44508
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.1115 −0.422693 −0.211346 0.977411i \(-0.567785\pi\)
−0.211346 + 0.977411i \(0.567785\pi\)
\(822\) 0 0
\(823\) 25.5279 0.889845 0.444923 0.895569i \(-0.353231\pi\)
0.444923 + 0.895569i \(0.353231\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.58359 0.298481 0.149240 0.988801i \(-0.452317\pi\)
0.149240 + 0.988801i \(0.452317\pi\)
\(828\) 0 0
\(829\) 10.3607 0.359841 0.179921 0.983681i \(-0.442416\pi\)
0.179921 + 0.983681i \(0.442416\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.59675 0.332508
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.5836 −0.434434 −0.217217 0.976123i \(-0.569698\pi\)
−0.217217 + 0.976123i \(0.569698\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.65248 −0.297654
\(846\) 0 0
\(847\) −16.1803 −0.555963
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.47214 0.153303
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.9443 1.46695 0.733474 0.679717i \(-0.237898\pi\)
0.733474 + 0.679717i \(0.237898\pi\)
\(858\) 0 0
\(859\) 7.05573 0.240738 0.120369 0.992729i \(-0.461592\pi\)
0.120369 + 0.992729i \(0.461592\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) 0 0
\(865\) 5.52786 0.187953
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −38.8328 −1.31731
\(870\) 0 0
\(871\) 3.41641 0.115761
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −33.8885 −1.14564
\(876\) 0 0
\(877\) 33.0557 1.11621 0.558106 0.829769i \(-0.311528\pi\)
0.558106 + 0.829769i \(0.311528\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.5410 −0.894190 −0.447095 0.894487i \(-0.647541\pi\)
−0.447095 + 0.894487i \(0.647541\pi\)
\(882\) 0 0
\(883\) 7.41641 0.249582 0.124791 0.992183i \(-0.460174\pi\)
0.124791 + 0.992183i \(0.460174\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 31.0557 1.04275 0.521375 0.853328i \(-0.325419\pi\)
0.521375 + 0.853328i \(0.325419\pi\)
\(888\) 0 0
\(889\) 4.94427 0.165826
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 28.9443 0.968583
\(894\) 0 0
\(895\) −25.8885 −0.865359
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −28.9443 −0.965346
\(900\) 0 0
\(901\) 14.4721 0.482137
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.6950 0.488480
\(906\) 0 0
\(907\) 1.12461 0.0373421 0.0186711 0.999826i \(-0.494056\pi\)
0.0186711 + 0.999826i \(0.494056\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.7214 −1.34916 −0.674579 0.738202i \(-0.735675\pi\)
−0.674579 + 0.738202i \(0.735675\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −54.8328 −1.81074
\(918\) 0 0
\(919\) 23.0132 0.759134 0.379567 0.925164i \(-0.376073\pi\)
0.379567 + 0.925164i \(0.376073\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 35.7771 1.17762
\(924\) 0 0
\(925\) −15.5279 −0.510553
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.8328 0.945974 0.472987 0.881069i \(-0.343176\pi\)
0.472987 + 0.881069i \(0.343176\pi\)
\(930\) 0 0
\(931\) −25.1246 −0.823426
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −13.6656 −0.446914
\(936\) 0 0
\(937\) −12.8328 −0.419230 −0.209615 0.977784i \(-0.567221\pi\)
−0.209615 + 0.977784i \(0.567221\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.5410 1.38680 0.693399 0.720554i \(-0.256112\pi\)
0.693399 + 0.720554i \(0.256112\pi\)
\(942\) 0 0
\(943\) 10.9443 0.356395
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.16718 −0.0379284 −0.0189642 0.999820i \(-0.506037\pi\)
−0.0189642 + 0.999820i \(0.506037\pi\)
\(948\) 0 0
\(949\) −31.0557 −1.00811
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12.0689 −0.390949 −0.195475 0.980709i \(-0.562625\pi\)
−0.195475 + 0.980709i \(0.562625\pi\)
\(954\) 0 0
\(955\) −1.88854 −0.0611118
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 10.8885 0.351243
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −21.5279 −0.693006
\(966\) 0 0
\(967\) 7.63932 0.245664 0.122832 0.992427i \(-0.460802\pi\)
0.122832 + 0.992427i \(0.460802\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.3050 0.555342 0.277671 0.960676i \(-0.410437\pi\)
0.277671 + 0.960676i \(0.410437\pi\)
\(972\) 0 0
\(973\) −28.9443 −0.927911
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32.0689 1.02597 0.512987 0.858396i \(-0.328539\pi\)
0.512987 + 0.858396i \(0.328539\pi\)
\(978\) 0 0
\(979\) 4.94427 0.158020
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.8328 0.728254 0.364127 0.931349i \(-0.381367\pi\)
0.364127 + 0.931349i \(0.381367\pi\)
\(984\) 0 0
\(985\) 21.5279 0.685935
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.70820 0.181510
\(990\) 0 0
\(991\) 1.52786 0.0485342 0.0242671 0.999706i \(-0.492275\pi\)
0.0242671 + 0.999706i \(0.492275\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.0000 0.380426
\(996\) 0 0
\(997\) 42.3607 1.34158 0.670788 0.741649i \(-0.265956\pi\)
0.670788 + 0.741649i \(0.265956\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3312.2.a.bb.1.1 2
3.2 odd 2 1104.2.a.m.1.2 2
4.3 odd 2 207.2.a.c.1.2 2
12.11 even 2 69.2.a.b.1.1 2
20.19 odd 2 5175.2.a.bk.1.1 2
24.5 odd 2 4416.2.a.bg.1.1 2
24.11 even 2 4416.2.a.bm.1.1 2
60.23 odd 4 1725.2.b.o.1174.3 4
60.47 odd 4 1725.2.b.o.1174.2 4
60.59 even 2 1725.2.a.ba.1.2 2
84.83 odd 2 3381.2.a.t.1.1 2
92.91 even 2 4761.2.a.v.1.2 2
132.131 odd 2 8349.2.a.i.1.2 2
276.275 odd 2 1587.2.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.a.b.1.1 2 12.11 even 2
207.2.a.c.1.2 2 4.3 odd 2
1104.2.a.m.1.2 2 3.2 odd 2
1587.2.a.i.1.1 2 276.275 odd 2
1725.2.a.ba.1.2 2 60.59 even 2
1725.2.b.o.1174.2 4 60.47 odd 4
1725.2.b.o.1174.3 4 60.23 odd 4
3312.2.a.bb.1.1 2 1.1 even 1 trivial
3381.2.a.t.1.1 2 84.83 odd 2
4416.2.a.bg.1.1 2 24.5 odd 2
4416.2.a.bm.1.1 2 24.11 even 2
4761.2.a.v.1.2 2 92.91 even 2
5175.2.a.bk.1.1 2 20.19 odd 2
8349.2.a.i.1.2 2 132.131 odd 2