Defining parameters
Level: | \( N \) | \(=\) | \( 3312 = 2^{4} \cdot 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3312.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 34 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3312))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 600 | 55 | 545 |
Cusp forms | 553 | 55 | 498 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(6\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(8\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(10\) |
Plus space | \(+\) | \(26\) | ||
Minus space | \(-\) | \(29\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3312))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3312))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3312)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(276))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(552))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(828))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1656))\)\(^{\oplus 2}\)