Properties

Label 3312.1.c.a.2161.1
Level $3312$
Weight $1$
Character 3312.2161
Self dual yes
Analytic conductor $1.653$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3312,1,Mod(2161,3312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3312.2161");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3312 = 2^{4} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3312.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.65290332184\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.23.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.914112.1

Embedding invariants

Embedding label 2161.1
Character \(\chi\) \(=\) 3312.2161

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+O(q^{10})\) \(q-1.00000 q^{13} +1.00000 q^{23} +1.00000 q^{25} +1.00000 q^{29} +1.00000 q^{31} +1.00000 q^{41} -1.00000 q^{47} +1.00000 q^{49} +2.00000 q^{59} -1.00000 q^{71} -1.00000 q^{73} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3312\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(2305\) \(2485\) \(2945\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 1.00000
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 0 0
\(73\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.00000 −1.00000
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.00000 −1.00000
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(348\) 0 0
\(349\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.00000 −1.00000
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −1.00000 −1.00000
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.00000 −1.00000
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) 0 0
\(577\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(600\) 0 0
\(601\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.00000 1.00000
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.00000 −1.00000
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00000 1.00000
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.00000 1.00000
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000 1.00000
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.00000 −2.00000
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 1.00000 1.00000
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.00000 1.00000
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.00000 1.00000
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 1.00000 1.00000
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 1.00000 1.00000
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3312.1.c.a.2161.1 1
3.2 odd 2 368.1.f.a.321.1 1
4.3 odd 2 207.1.d.a.91.1 1
12.11 even 2 23.1.b.a.22.1 1
23.22 odd 2 CM 3312.1.c.a.2161.1 1
24.5 odd 2 1472.1.f.a.321.1 1
24.11 even 2 1472.1.f.b.321.1 1
36.7 odd 6 1863.1.f.a.919.1 2
36.11 even 6 1863.1.f.b.919.1 2
36.23 even 6 1863.1.f.b.298.1 2
36.31 odd 6 1863.1.f.a.298.1 2
60.23 odd 4 575.1.c.a.574.2 2
60.47 odd 4 575.1.c.a.574.1 2
60.59 even 2 575.1.d.a.551.1 1
69.68 even 2 368.1.f.a.321.1 1
84.11 even 6 1127.1.f.b.275.1 2
84.23 even 6 1127.1.f.b.459.1 2
84.47 odd 6 1127.1.f.a.459.1 2
84.59 odd 6 1127.1.f.a.275.1 2
84.83 odd 2 1127.1.d.b.344.1 1
92.91 even 2 207.1.d.a.91.1 1
132.35 odd 10 2783.1.f.a.2138.1 4
132.47 even 10 2783.1.f.c.735.1 4
132.59 even 10 2783.1.f.c.390.1 4
132.71 even 10 2783.1.f.c.850.1 4
132.83 odd 10 2783.1.f.a.850.1 4
132.95 odd 10 2783.1.f.a.390.1 4
132.107 odd 10 2783.1.f.a.735.1 4
132.119 even 10 2783.1.f.c.2138.1 4
132.131 odd 2 2783.1.d.b.1816.1 1
156.11 odd 12 3887.1.j.e.2851.2 4
156.23 even 6 3887.1.h.a.22.1 2
156.35 even 6 3887.1.h.c.3357.1 2
156.47 odd 4 3887.1.c.a.3886.1 2
156.59 odd 12 3887.1.j.e.3403.1 4
156.71 odd 12 3887.1.j.e.3403.2 4
156.83 odd 4 3887.1.c.a.3886.2 2
156.95 even 6 3887.1.h.a.3357.1 2
156.107 even 6 3887.1.h.c.22.1 2
156.119 odd 12 3887.1.j.e.2851.1 4
156.155 even 2 3887.1.d.b.2874.1 1
276.11 odd 22 529.1.d.a.63.1 10
276.35 even 22 529.1.d.a.63.1 10
276.59 even 22 529.1.d.a.130.1 10
276.71 even 22 529.1.d.a.42.1 10
276.83 odd 22 529.1.d.a.195.1 10
276.95 even 22 529.1.d.a.359.1 10
276.107 odd 22 529.1.d.a.28.1 10
276.119 even 22 529.1.d.a.352.1 10
276.131 even 22 529.1.d.a.411.1 10
276.143 odd 22 529.1.d.a.274.1 10
276.155 odd 22 529.1.d.a.263.1 10
276.167 even 22 529.1.d.a.263.1 10
276.179 even 22 529.1.d.a.274.1 10
276.191 odd 22 529.1.d.a.411.1 10
276.203 odd 22 529.1.d.a.352.1 10
276.215 even 22 529.1.d.a.28.1 10
276.227 odd 22 529.1.d.a.359.1 10
276.239 even 22 529.1.d.a.195.1 10
276.251 odd 22 529.1.d.a.42.1 10
276.263 odd 22 529.1.d.a.130.1 10
276.275 odd 2 23.1.b.a.22.1 1
552.275 odd 2 1472.1.f.b.321.1 1
552.413 even 2 1472.1.f.a.321.1 1
828.275 odd 6 1863.1.f.b.298.1 2
828.367 even 6 1863.1.f.a.919.1 2
828.551 odd 6 1863.1.f.b.919.1 2
828.643 even 6 1863.1.f.a.298.1 2
1380.827 even 4 575.1.c.a.574.1 2
1380.1103 even 4 575.1.c.a.574.2 2
1380.1379 odd 2 575.1.d.a.551.1 1
1932.275 odd 6 1127.1.f.b.459.1 2
1932.551 even 6 1127.1.f.a.459.1 2
1932.1103 odd 6 1127.1.f.b.275.1 2
1932.1655 even 6 1127.1.f.a.275.1 2
1932.1931 even 2 1127.1.d.b.344.1 1
3036.827 even 10 2783.1.f.a.2138.1 4
3036.1103 odd 10 2783.1.f.c.735.1 4
3036.1379 odd 10 2783.1.f.c.390.1 4
3036.1655 odd 10 2783.1.f.c.850.1 4
3036.1931 even 10 2783.1.f.a.850.1 4
3036.2207 even 10 2783.1.f.a.390.1 4
3036.2483 even 10 2783.1.f.a.735.1 4
3036.2759 odd 10 2783.1.f.c.2138.1 4
3036.3035 even 2 2783.1.d.b.1816.1 1
3588.275 even 12 3887.1.j.e.2851.1 4
3588.551 even 4 3887.1.c.a.3886.2 2
3588.827 even 4 3887.1.c.a.3886.1 2
3588.1103 even 12 3887.1.j.e.2851.2 4
3588.1655 odd 6 3887.1.h.a.3357.1 2
3588.1931 even 12 3887.1.j.e.3403.1 4
3588.2207 odd 6 3887.1.h.a.22.1 2
3588.2759 odd 6 3887.1.h.c.22.1 2
3588.3035 even 12 3887.1.j.e.3403.2 4
3588.3311 odd 6 3887.1.h.c.3357.1 2
3588.3587 odd 2 3887.1.d.b.2874.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.1.b.a.22.1 1 12.11 even 2
23.1.b.a.22.1 1 276.275 odd 2
207.1.d.a.91.1 1 4.3 odd 2
207.1.d.a.91.1 1 92.91 even 2
368.1.f.a.321.1 1 3.2 odd 2
368.1.f.a.321.1 1 69.68 even 2
529.1.d.a.28.1 10 276.107 odd 22
529.1.d.a.28.1 10 276.215 even 22
529.1.d.a.42.1 10 276.71 even 22
529.1.d.a.42.1 10 276.251 odd 22
529.1.d.a.63.1 10 276.11 odd 22
529.1.d.a.63.1 10 276.35 even 22
529.1.d.a.130.1 10 276.59 even 22
529.1.d.a.130.1 10 276.263 odd 22
529.1.d.a.195.1 10 276.83 odd 22
529.1.d.a.195.1 10 276.239 even 22
529.1.d.a.263.1 10 276.155 odd 22
529.1.d.a.263.1 10 276.167 even 22
529.1.d.a.274.1 10 276.143 odd 22
529.1.d.a.274.1 10 276.179 even 22
529.1.d.a.352.1 10 276.119 even 22
529.1.d.a.352.1 10 276.203 odd 22
529.1.d.a.359.1 10 276.95 even 22
529.1.d.a.359.1 10 276.227 odd 22
529.1.d.a.411.1 10 276.131 even 22
529.1.d.a.411.1 10 276.191 odd 22
575.1.c.a.574.1 2 60.47 odd 4
575.1.c.a.574.1 2 1380.827 even 4
575.1.c.a.574.2 2 60.23 odd 4
575.1.c.a.574.2 2 1380.1103 even 4
575.1.d.a.551.1 1 60.59 even 2
575.1.d.a.551.1 1 1380.1379 odd 2
1127.1.d.b.344.1 1 84.83 odd 2
1127.1.d.b.344.1 1 1932.1931 even 2
1127.1.f.a.275.1 2 84.59 odd 6
1127.1.f.a.275.1 2 1932.1655 even 6
1127.1.f.a.459.1 2 84.47 odd 6
1127.1.f.a.459.1 2 1932.551 even 6
1127.1.f.b.275.1 2 84.11 even 6
1127.1.f.b.275.1 2 1932.1103 odd 6
1127.1.f.b.459.1 2 84.23 even 6
1127.1.f.b.459.1 2 1932.275 odd 6
1472.1.f.a.321.1 1 24.5 odd 2
1472.1.f.a.321.1 1 552.413 even 2
1472.1.f.b.321.1 1 24.11 even 2
1472.1.f.b.321.1 1 552.275 odd 2
1863.1.f.a.298.1 2 36.31 odd 6
1863.1.f.a.298.1 2 828.643 even 6
1863.1.f.a.919.1 2 36.7 odd 6
1863.1.f.a.919.1 2 828.367 even 6
1863.1.f.b.298.1 2 36.23 even 6
1863.1.f.b.298.1 2 828.275 odd 6
1863.1.f.b.919.1 2 36.11 even 6
1863.1.f.b.919.1 2 828.551 odd 6
2783.1.d.b.1816.1 1 132.131 odd 2
2783.1.d.b.1816.1 1 3036.3035 even 2
2783.1.f.a.390.1 4 132.95 odd 10
2783.1.f.a.390.1 4 3036.2207 even 10
2783.1.f.a.735.1 4 132.107 odd 10
2783.1.f.a.735.1 4 3036.2483 even 10
2783.1.f.a.850.1 4 132.83 odd 10
2783.1.f.a.850.1 4 3036.1931 even 10
2783.1.f.a.2138.1 4 132.35 odd 10
2783.1.f.a.2138.1 4 3036.827 even 10
2783.1.f.c.390.1 4 132.59 even 10
2783.1.f.c.390.1 4 3036.1379 odd 10
2783.1.f.c.735.1 4 132.47 even 10
2783.1.f.c.735.1 4 3036.1103 odd 10
2783.1.f.c.850.1 4 132.71 even 10
2783.1.f.c.850.1 4 3036.1655 odd 10
2783.1.f.c.2138.1 4 132.119 even 10
2783.1.f.c.2138.1 4 3036.2759 odd 10
3312.1.c.a.2161.1 1 1.1 even 1 trivial
3312.1.c.a.2161.1 1 23.22 odd 2 CM
3887.1.c.a.3886.1 2 156.47 odd 4
3887.1.c.a.3886.1 2 3588.827 even 4
3887.1.c.a.3886.2 2 156.83 odd 4
3887.1.c.a.3886.2 2 3588.551 even 4
3887.1.d.b.2874.1 1 156.155 even 2
3887.1.d.b.2874.1 1 3588.3587 odd 2
3887.1.h.a.22.1 2 156.23 even 6
3887.1.h.a.22.1 2 3588.2207 odd 6
3887.1.h.a.3357.1 2 156.95 even 6
3887.1.h.a.3357.1 2 3588.1655 odd 6
3887.1.h.c.22.1 2 156.107 even 6
3887.1.h.c.22.1 2 3588.2759 odd 6
3887.1.h.c.3357.1 2 156.35 even 6
3887.1.h.c.3357.1 2 3588.3311 odd 6
3887.1.j.e.2851.1 4 156.119 odd 12
3887.1.j.e.2851.1 4 3588.275 even 12
3887.1.j.e.2851.2 4 156.11 odd 12
3887.1.j.e.2851.2 4 3588.1103 even 12
3887.1.j.e.3403.1 4 156.59 odd 12
3887.1.j.e.3403.1 4 3588.1931 even 12
3887.1.j.e.3403.2 4 156.71 odd 12
3887.1.j.e.3403.2 4 3588.3035 even 12