Defining parameters
| Level: | \( N \) | \(=\) | \( 3312 = 2^{4} \cdot 3^{2} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3312.bm (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 207 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3312, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 60 | 10 | 50 |
| Cusp forms | 36 | 6 | 30 |
| Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3312, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 3312.1.bm.a | $6$ | $1.653$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-23}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{18}^{7}q^{3}-\zeta_{18}^{5}q^{9}+(\zeta_{18}^{4}+\zeta_{18}^{8}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3312, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3312, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 5}\)