Properties

Label 3312.1.bm
Level $3312$
Weight $1$
Character orbit 3312.bm
Rep. character $\chi_{3312}(1057,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $6$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3312 = 2^{4} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3312.bm (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3312, [\chi])\).

Total New Old
Modular forms 60 10 50
Cusp forms 36 6 30
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q + 3 q^{23} - 3 q^{25} + 3 q^{27} + 3 q^{39} - 3 q^{49} - 3 q^{59} - 6 q^{87} - 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3312, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3312.1.bm.a 3312.bm 207.f $6$ $1.653$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-23}) \) None 207.1.f.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{18}^{7}q^{3}-\zeta_{18}^{5}q^{9}+(\zeta_{18}^{4}+\zeta_{18}^{8}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3312, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3312, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 5}\)