# Properties

 Label 3300.2.c.l Level $3300$ Weight $2$ Character orbit 3300.c Analytic conductor $26.351$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3300.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$26.3506326670$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{13})$$ Defining polynomial: $$x^{4} + 7 x^{2} + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 660) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{1} q^{3} + ( -\beta_{1} + \beta_{2} ) q^{7} - q^{9} +O(q^{10})$$ $$q -\beta_{1} q^{3} + ( -\beta_{1} + \beta_{2} ) q^{7} - q^{9} + q^{11} + ( -\beta_{1} + \beta_{2} ) q^{13} + ( -3 \beta_{1} + \beta_{2} ) q^{17} -2 \beta_{3} q^{19} + ( -1 + \beta_{3} ) q^{21} + \beta_{1} q^{27} -8 q^{29} + ( 2 - 2 \beta_{3} ) q^{31} -\beta_{1} q^{33} + ( -4 \beta_{1} - 2 \beta_{2} ) q^{37} + ( -1 + \beta_{3} ) q^{39} + 8 q^{41} + ( -7 \beta_{1} - \beta_{2} ) q^{43} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{47} + ( -7 + 2 \beta_{3} ) q^{49} + ( -3 + \beta_{3} ) q^{51} + 2 \beta_{1} q^{53} + 2 \beta_{2} q^{57} -8 q^{59} -2 \beta_{3} q^{61} + ( \beta_{1} - \beta_{2} ) q^{63} + 4 \beta_{1} q^{67} + 4 \beta_{3} q^{71} + ( -3 \beta_{1} - \beta_{2} ) q^{73} + ( -\beta_{1} + \beta_{2} ) q^{77} + ( 4 - 2 \beta_{3} ) q^{79} + q^{81} + ( -7 \beta_{1} + \beta_{2} ) q^{83} + 8 \beta_{1} q^{87} -6 q^{89} + ( -14 + 2 \beta_{3} ) q^{91} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{93} + ( -2 \beta_{1} - 4 \beta_{2} ) q^{97} - q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 4q^{9} + O(q^{10})$$ $$4q - 4q^{9} + 4q^{11} - 4q^{21} - 32q^{29} + 8q^{31} - 4q^{39} + 32q^{41} - 28q^{49} - 12q^{51} - 32q^{59} + 16q^{79} + 4q^{81} - 24q^{89} - 56q^{91} - 4q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 7 x^{2} + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{3} + 4 \nu$$$$)/3$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} + 10 \nu$$$$)/3$$ $$\beta_{3}$$ $$=$$ $$2 \nu^{2} + 7$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{2} - \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{3} - 7$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$-2 \beta_{2} + 5 \beta_{1}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times$$.

 $$n$$ $$1201$$ $$1651$$ $$2201$$ $$2377$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1849.1
 − 2.30278i 1.30278i − 1.30278i 2.30278i
0 1.00000i 0 0 0 4.60555i 0 −1.00000 0
1849.2 0 1.00000i 0 0 0 2.60555i 0 −1.00000 0
1849.3 0 1.00000i 0 0 0 2.60555i 0 −1.00000 0
1849.4 0 1.00000i 0 0 0 4.60555i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3300.2.c.l 4
3.b odd 2 1 9900.2.c.q 4
5.b even 2 1 inner 3300.2.c.l 4
5.c odd 4 1 660.2.a.e 2
5.c odd 4 1 3300.2.a.w 2
15.d odd 2 1 9900.2.c.q 4
15.e even 4 1 1980.2.a.h 2
15.e even 4 1 9900.2.a.bl 2
20.e even 4 1 2640.2.a.bc 2
55.e even 4 1 7260.2.a.w 2
60.l odd 4 1 7920.2.a.bo 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
660.2.a.e 2 5.c odd 4 1
1980.2.a.h 2 15.e even 4 1
2640.2.a.bc 2 20.e even 4 1
3300.2.a.w 2 5.c odd 4 1
3300.2.c.l 4 1.a even 1 1 trivial
3300.2.c.l 4 5.b even 2 1 inner
7260.2.a.w 2 55.e even 4 1
7920.2.a.bo 2 60.l odd 4 1
9900.2.a.bl 2 15.e even 4 1
9900.2.c.q 4 3.b odd 2 1
9900.2.c.q 4 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3300, [\chi])$$:

 $$T_{7}^{4} + 28 T_{7}^{2} + 144$$ $$T_{13}^{4} + 28 T_{13}^{2} + 144$$ $$T_{17}^{4} + 44 T_{17}^{2} + 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$( 1 + T^{2} )^{2}$$
$5$ $$T^{4}$$
$7$ $$144 + 28 T^{2} + T^{4}$$
$11$ $$( -1 + T )^{4}$$
$13$ $$144 + 28 T^{2} + T^{4}$$
$17$ $$16 + 44 T^{2} + T^{4}$$
$19$ $$( -52 + T^{2} )^{2}$$
$23$ $$T^{4}$$
$29$ $$( 8 + T )^{4}$$
$31$ $$( -48 - 4 T + T^{2} )^{2}$$
$37$ $$1296 + 136 T^{2} + T^{4}$$
$41$ $$( -8 + T )^{4}$$
$43$ $$1296 + 124 T^{2} + T^{4}$$
$47$ $$2304 + 112 T^{2} + T^{4}$$
$53$ $$( 4 + T^{2} )^{2}$$
$59$ $$( 8 + T )^{4}$$
$61$ $$( -52 + T^{2} )^{2}$$
$67$ $$( 16 + T^{2} )^{2}$$
$71$ $$( -208 + T^{2} )^{2}$$
$73$ $$16 + 44 T^{2} + T^{4}$$
$79$ $$( -36 - 8 T + T^{2} )^{2}$$
$83$ $$1296 + 124 T^{2} + T^{4}$$
$89$ $$( 6 + T )^{4}$$
$97$ $$41616 + 424 T^{2} + T^{4}$$