# Properties

 Label 3300.2.c.b.1849.2 Level $3300$ Weight $2$ Character 3300.1849 Analytic conductor $26.351$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3300.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$26.3506326670$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 660) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 1849.2 Root $$1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 3300.1849 Dual form 3300.2.c.b.1849.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000i q^{3} +4.00000i q^{7} -1.00000 q^{9} +O(q^{10})$$ $$q+1.00000i q^{3} +4.00000i q^{7} -1.00000 q^{9} -1.00000 q^{11} -4.00000i q^{13} +6.00000i q^{17} -2.00000 q^{19} -4.00000 q^{21} -1.00000i q^{27} -4.00000 q^{31} -1.00000i q^{33} +10.0000i q^{37} +4.00000 q^{39} -4.00000i q^{43} -12.0000i q^{47} -9.00000 q^{49} -6.00000 q^{51} +6.00000i q^{53} -2.00000i q^{57} -12.0000 q^{59} -10.0000 q^{61} -4.00000i q^{63} +4.00000i q^{67} +8.00000i q^{73} -4.00000i q^{77} +10.0000 q^{79} +1.00000 q^{81} -6.00000i q^{83} +6.00000 q^{89} +16.0000 q^{91} -4.00000i q^{93} +10.0000i q^{97} +1.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^9 $$2 q - 2 q^{9} - 2 q^{11} - 4 q^{19} - 8 q^{21} - 8 q^{31} + 8 q^{39} - 18 q^{49} - 12 q^{51} - 24 q^{59} - 20 q^{61} + 20 q^{79} + 2 q^{81} + 12 q^{89} + 32 q^{91} + 2 q^{99}+O(q^{100})$$ 2 * q - 2 * q^9 - 2 * q^11 - 4 * q^19 - 8 * q^21 - 8 * q^31 + 8 * q^39 - 18 * q^49 - 12 * q^51 - 24 * q^59 - 20 * q^61 + 20 * q^79 + 2 * q^81 + 12 * q^89 + 32 * q^91 + 2 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times$$.

 $$n$$ $$1201$$ $$1651$$ $$2201$$ $$2377$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000i 0.577350i
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 4.00000i 1.51186i 0.654654 + 0.755929i $$0.272814\pi$$
−0.654654 + 0.755929i $$0.727186\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ −1.00000 −0.301511
$$12$$ 0 0
$$13$$ − 4.00000i − 1.10940i −0.832050 0.554700i $$-0.812833\pi$$
0.832050 0.554700i $$-0.187167\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 6.00000i 1.45521i 0.685994 + 0.727607i $$0.259367\pi$$
−0.685994 + 0.727607i $$0.740633\pi$$
$$18$$ 0 0
$$19$$ −2.00000 −0.458831 −0.229416 0.973329i $$-0.573682\pi$$
−0.229416 + 0.973329i $$0.573682\pi$$
$$20$$ 0 0
$$21$$ −4.00000 −0.872872
$$22$$ 0 0
$$23$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ − 1.00000i − 0.192450i
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ 0 0
$$33$$ − 1.00000i − 0.174078i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 10.0000i 1.64399i 0.569495 + 0.821995i $$0.307139\pi$$
−0.569495 + 0.821995i $$0.692861\pi$$
$$38$$ 0 0
$$39$$ 4.00000 0.640513
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ − 4.00000i − 0.609994i −0.952353 0.304997i $$-0.901344\pi$$
0.952353 0.304997i $$-0.0986555\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ − 12.0000i − 1.75038i −0.483779 0.875190i $$-0.660736\pi$$
0.483779 0.875190i $$-0.339264\pi$$
$$48$$ 0 0
$$49$$ −9.00000 −1.28571
$$50$$ 0 0
$$51$$ −6.00000 −0.840168
$$52$$ 0 0
$$53$$ 6.00000i 0.824163i 0.911147 + 0.412082i $$0.135198\pi$$
−0.911147 + 0.412082i $$0.864802\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ − 2.00000i − 0.264906i
$$58$$ 0 0
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ −10.0000 −1.28037 −0.640184 0.768221i $$-0.721142\pi$$
−0.640184 + 0.768221i $$0.721142\pi$$
$$62$$ 0 0
$$63$$ − 4.00000i − 0.503953i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 4.00000i 0.488678i 0.969690 + 0.244339i $$0.0785709\pi$$
−0.969690 + 0.244339i $$0.921429\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 8.00000i 0.936329i 0.883641 + 0.468165i $$0.155085\pi$$
−0.883641 + 0.468165i $$0.844915\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 4.00000i − 0.455842i
$$78$$ 0 0
$$79$$ 10.0000 1.12509 0.562544 0.826767i $$-0.309823\pi$$
0.562544 + 0.826767i $$0.309823\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ − 6.00000i − 0.658586i −0.944228 0.329293i $$-0.893190\pi$$
0.944228 0.329293i $$-0.106810\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ 16.0000 1.67726
$$92$$ 0 0
$$93$$ − 4.00000i − 0.414781i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 10.0000i 1.01535i 0.861550 + 0.507673i $$0.169494\pi$$
−0.861550 + 0.507673i $$0.830506\pi$$
$$98$$ 0 0
$$99$$ 1.00000 0.100504
$$100$$ 0 0
$$101$$ −12.0000 −1.19404 −0.597022 0.802225i $$-0.703650\pi$$
−0.597022 + 0.802225i $$0.703650\pi$$
$$102$$ 0 0
$$103$$ − 16.0000i − 1.57653i −0.615338 0.788263i $$-0.710980\pi$$
0.615338 0.788263i $$-0.289020\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 18.0000i − 1.74013i −0.492941 0.870063i $$-0.664078\pi$$
0.492941 0.870063i $$-0.335922\pi$$
$$108$$ 0 0
$$109$$ −14.0000 −1.34096 −0.670478 0.741929i $$-0.733911\pi$$
−0.670478 + 0.741929i $$0.733911\pi$$
$$110$$ 0 0
$$111$$ −10.0000 −0.949158
$$112$$ 0 0
$$113$$ − 6.00000i − 0.564433i −0.959351 0.282216i $$-0.908930\pi$$
0.959351 0.282216i $$-0.0910696\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 4.00000i 0.369800i
$$118$$ 0 0
$$119$$ −24.0000 −2.20008
$$120$$ 0 0
$$121$$ 1.00000 0.0909091
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ − 8.00000i − 0.709885i −0.934888 0.354943i $$-0.884500\pi$$
0.934888 0.354943i $$-0.115500\pi$$
$$128$$ 0 0
$$129$$ 4.00000 0.352180
$$130$$ 0 0
$$131$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$132$$ 0 0
$$133$$ − 8.00000i − 0.693688i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ − 6.00000i − 0.512615i −0.966595 0.256307i $$-0.917494\pi$$
0.966595 0.256307i $$-0.0825059\pi$$
$$138$$ 0 0
$$139$$ −14.0000 −1.18746 −0.593732 0.804663i $$-0.702346\pi$$
−0.593732 + 0.804663i $$0.702346\pi$$
$$140$$ 0 0
$$141$$ 12.0000 1.01058
$$142$$ 0 0
$$143$$ 4.00000i 0.334497i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ − 9.00000i − 0.742307i
$$148$$ 0 0
$$149$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$150$$ 0 0
$$151$$ 14.0000 1.13930 0.569652 0.821886i $$-0.307078\pi$$
0.569652 + 0.821886i $$0.307078\pi$$
$$152$$ 0 0
$$153$$ − 6.00000i − 0.485071i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 22.0000i 1.75579i 0.478852 + 0.877896i $$0.341053\pi$$
−0.478852 + 0.877896i $$0.658947\pi$$
$$158$$ 0 0
$$159$$ −6.00000 −0.475831
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 20.0000i 1.56652i 0.621694 + 0.783260i $$0.286445\pi$$
−0.621694 + 0.783260i $$0.713555\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ − 18.0000i − 1.39288i −0.717614 0.696441i $$-0.754766\pi$$
0.717614 0.696441i $$-0.245234\pi$$
$$168$$ 0 0
$$169$$ −3.00000 −0.230769
$$170$$ 0 0
$$171$$ 2.00000 0.152944
$$172$$ 0 0
$$173$$ − 18.0000i − 1.36851i −0.729241 0.684257i $$-0.760127\pi$$
0.729241 0.684257i $$-0.239873\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ − 12.0000i − 0.901975i
$$178$$ 0 0
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ 2.00000 0.148659 0.0743294 0.997234i $$-0.476318\pi$$
0.0743294 + 0.997234i $$0.476318\pi$$
$$182$$ 0 0
$$183$$ − 10.0000i − 0.739221i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ − 6.00000i − 0.438763i
$$188$$ 0 0
$$189$$ 4.00000 0.290957
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ − 4.00000i − 0.287926i −0.989583 0.143963i $$-0.954015\pi$$
0.989583 0.143963i $$-0.0459847\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 18.0000i 1.28245i 0.767354 + 0.641223i $$0.221573\pi$$
−0.767354 + 0.641223i $$0.778427\pi$$
$$198$$ 0 0
$$199$$ 16.0000 1.13421 0.567105 0.823646i $$-0.308063\pi$$
0.567105 + 0.823646i $$0.308063\pi$$
$$200$$ 0 0
$$201$$ −4.00000 −0.282138
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 2.00000 0.138343
$$210$$ 0 0
$$211$$ −22.0000 −1.51454 −0.757271 0.653101i $$-0.773468\pi$$
−0.757271 + 0.653101i $$0.773468\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ − 16.0000i − 1.08615i
$$218$$ 0 0
$$219$$ −8.00000 −0.540590
$$220$$ 0 0
$$221$$ 24.0000 1.61441
$$222$$ 0 0
$$223$$ 8.00000i 0.535720i 0.963458 + 0.267860i $$0.0863164\pi$$
−0.963458 + 0.267860i $$0.913684\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 18.0000i 1.19470i 0.801980 + 0.597351i $$0.203780\pi$$
−0.801980 + 0.597351i $$0.796220\pi$$
$$228$$ 0 0
$$229$$ −26.0000 −1.71813 −0.859064 0.511868i $$-0.828954\pi$$
−0.859064 + 0.511868i $$0.828954\pi$$
$$230$$ 0 0
$$231$$ 4.00000 0.263181
$$232$$ 0 0
$$233$$ − 6.00000i − 0.393073i −0.980497 0.196537i $$-0.937031\pi$$
0.980497 0.196537i $$-0.0629694\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 10.0000i 0.649570i
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ −22.0000 −1.41714 −0.708572 0.705638i $$-0.750660\pi$$
−0.708572 + 0.705638i $$0.750660\pi$$
$$242$$ 0 0
$$243$$ 1.00000i 0.0641500i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 8.00000i 0.509028i
$$248$$ 0 0
$$249$$ 6.00000 0.380235
$$250$$ 0 0
$$251$$ 12.0000 0.757433 0.378717 0.925513i $$-0.376365\pi$$
0.378717 + 0.925513i $$0.376365\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 18.0000i 1.12281i 0.827541 + 0.561405i $$0.189739\pi$$
−0.827541 + 0.561405i $$0.810261\pi$$
$$258$$ 0 0
$$259$$ −40.0000 −2.48548
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ − 18.0000i − 1.10993i −0.831875 0.554964i $$-0.812732\pi$$
0.831875 0.554964i $$-0.187268\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 6.00000i 0.367194i
$$268$$ 0 0
$$269$$ −6.00000 −0.365826 −0.182913 0.983129i $$-0.558553\pi$$
−0.182913 + 0.983129i $$0.558553\pi$$
$$270$$ 0 0
$$271$$ 2.00000 0.121491 0.0607457 0.998153i $$-0.480652\pi$$
0.0607457 + 0.998153i $$0.480652\pi$$
$$272$$ 0 0
$$273$$ 16.0000i 0.968364i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 28.0000i 1.68236i 0.540758 + 0.841178i $$0.318138\pi$$
−0.540758 + 0.841178i $$0.681862\pi$$
$$278$$ 0 0
$$279$$ 4.00000 0.239474
$$280$$ 0 0
$$281$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$282$$ 0 0
$$283$$ − 4.00000i − 0.237775i −0.992908 0.118888i $$-0.962067\pi$$
0.992908 0.118888i $$-0.0379328\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −19.0000 −1.11765
$$290$$ 0 0
$$291$$ −10.0000 −0.586210
$$292$$ 0 0
$$293$$ 30.0000i 1.75262i 0.481749 + 0.876309i $$0.340002\pi$$
−0.481749 + 0.876309i $$0.659998\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 1.00000i 0.0580259i
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 16.0000 0.922225
$$302$$ 0 0
$$303$$ − 12.0000i − 0.689382i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 16.0000i 0.913168i 0.889680 + 0.456584i $$0.150927\pi$$
−0.889680 + 0.456584i $$0.849073\pi$$
$$308$$ 0 0
$$309$$ 16.0000 0.910208
$$310$$ 0 0
$$311$$ −24.0000 −1.36092 −0.680458 0.732787i $$-0.738219\pi$$
−0.680458 + 0.732787i $$0.738219\pi$$
$$312$$ 0 0
$$313$$ − 22.0000i − 1.24351i −0.783210 0.621757i $$-0.786419\pi$$
0.783210 0.621757i $$-0.213581\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ − 6.00000i − 0.336994i −0.985702 0.168497i $$-0.946109\pi$$
0.985702 0.168497i $$-0.0538913\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 18.0000 1.00466
$$322$$ 0 0
$$323$$ − 12.0000i − 0.667698i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ − 14.0000i − 0.774202i
$$328$$ 0 0
$$329$$ 48.0000 2.64633
$$330$$ 0 0
$$331$$ −28.0000 −1.53902 −0.769510 0.638635i $$-0.779499\pi$$
−0.769510 + 0.638635i $$0.779499\pi$$
$$332$$ 0 0
$$333$$ − 10.0000i − 0.547997i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 8.00000i − 0.435788i −0.975972 0.217894i $$-0.930081\pi$$
0.975972 0.217894i $$-0.0699187\pi$$
$$338$$ 0 0
$$339$$ 6.00000 0.325875
$$340$$ 0 0
$$341$$ 4.00000 0.216612
$$342$$ 0 0
$$343$$ − 8.00000i − 0.431959i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 6.00000i 0.322097i 0.986947 + 0.161048i $$0.0514875\pi$$
−0.986947 + 0.161048i $$0.948512\pi$$
$$348$$ 0 0
$$349$$ −14.0000 −0.749403 −0.374701 0.927146i $$-0.622255\pi$$
−0.374701 + 0.927146i $$0.622255\pi$$
$$350$$ 0 0
$$351$$ −4.00000 −0.213504
$$352$$ 0 0
$$353$$ − 30.0000i − 1.59674i −0.602168 0.798369i $$-0.705696\pi$$
0.602168 0.798369i $$-0.294304\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ − 24.0000i − 1.27021i
$$358$$ 0 0
$$359$$ 36.0000 1.90001 0.950004 0.312239i $$-0.101079\pi$$
0.950004 + 0.312239i $$0.101079\pi$$
$$360$$ 0 0
$$361$$ −15.0000 −0.789474
$$362$$ 0 0
$$363$$ 1.00000i 0.0524864i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 16.0000i 0.835193i 0.908633 + 0.417597i $$0.137127\pi$$
−0.908633 + 0.417597i $$0.862873\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −24.0000 −1.24602
$$372$$ 0 0
$$373$$ − 4.00000i − 0.207112i −0.994624 0.103556i $$-0.966978\pi$$
0.994624 0.103556i $$-0.0330221\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −8.00000 −0.410932 −0.205466 0.978664i $$-0.565871\pi$$
−0.205466 + 0.978664i $$0.565871\pi$$
$$380$$ 0 0
$$381$$ 8.00000 0.409852
$$382$$ 0 0
$$383$$ − 12.0000i − 0.613171i −0.951843 0.306586i $$-0.900813\pi$$
0.951843 0.306586i $$-0.0991866\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 4.00000i 0.203331i
$$388$$ 0 0
$$389$$ −18.0000 −0.912636 −0.456318 0.889817i $$-0.650832\pi$$
−0.456318 + 0.889817i $$0.650832\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 26.0000i − 1.30490i −0.757831 0.652451i $$-0.773741\pi$$
0.757831 0.652451i $$-0.226259\pi$$
$$398$$ 0 0
$$399$$ 8.00000 0.400501
$$400$$ 0 0
$$401$$ 30.0000 1.49813 0.749064 0.662497i $$-0.230503\pi$$
0.749064 + 0.662497i $$0.230503\pi$$
$$402$$ 0 0
$$403$$ 16.0000i 0.797017i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ − 10.0000i − 0.495682i
$$408$$ 0 0
$$409$$ 10.0000 0.494468 0.247234 0.968956i $$-0.420478\pi$$
0.247234 + 0.968956i $$0.420478\pi$$
$$410$$ 0 0
$$411$$ 6.00000 0.295958
$$412$$ 0 0
$$413$$ − 48.0000i − 2.36193i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ − 14.0000i − 0.685583i
$$418$$ 0 0
$$419$$ 36.0000 1.75872 0.879358 0.476162i $$-0.157972\pi$$
0.879358 + 0.476162i $$0.157972\pi$$
$$420$$ 0 0
$$421$$ 26.0000 1.26716 0.633581 0.773676i $$-0.281584\pi$$
0.633581 + 0.773676i $$0.281584\pi$$
$$422$$ 0 0
$$423$$ 12.0000i 0.583460i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ − 40.0000i − 1.93574i
$$428$$ 0 0
$$429$$ −4.00000 −0.193122
$$430$$ 0 0
$$431$$ −36.0000 −1.73406 −0.867029 0.498257i $$-0.833974\pi$$
−0.867029 + 0.498257i $$0.833974\pi$$
$$432$$ 0 0
$$433$$ 38.0000i 1.82616i 0.407777 + 0.913082i $$0.366304\pi$$
−0.407777 + 0.913082i $$0.633696\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 10.0000 0.477274 0.238637 0.971109i $$-0.423299\pi$$
0.238637 + 0.971109i $$0.423299\pi$$
$$440$$ 0 0
$$441$$ 9.00000 0.428571
$$442$$ 0 0
$$443$$ 24.0000i 1.14027i 0.821549 + 0.570137i $$0.193110\pi$$
−0.821549 + 0.570137i $$0.806890\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 30.0000 1.41579 0.707894 0.706319i $$-0.249646\pi$$
0.707894 + 0.706319i $$0.249646\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 14.0000i 0.657777i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 28.0000i 1.30978i 0.755722 + 0.654892i $$0.227286\pi$$
−0.755722 + 0.654892i $$0.772714\pi$$
$$458$$ 0 0
$$459$$ 6.00000 0.280056
$$460$$ 0 0
$$461$$ −24.0000 −1.11779 −0.558896 0.829238i $$-0.688775\pi$$
−0.558896 + 0.829238i $$0.688775\pi$$
$$462$$ 0 0
$$463$$ 32.0000i 1.48717i 0.668644 + 0.743583i $$0.266875\pi$$
−0.668644 + 0.743583i $$0.733125\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ − 12.0000i − 0.555294i −0.960683 0.277647i $$-0.910445\pi$$
0.960683 0.277647i $$-0.0895545\pi$$
$$468$$ 0 0
$$469$$ −16.0000 −0.738811
$$470$$ 0 0
$$471$$ −22.0000 −1.01371
$$472$$ 0 0
$$473$$ 4.00000i 0.183920i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ − 6.00000i − 0.274721i
$$478$$ 0 0
$$479$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$480$$ 0 0
$$481$$ 40.0000 1.82384
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 16.0000i 0.725029i 0.931978 + 0.362515i $$0.118082\pi$$
−0.931978 + 0.362515i $$0.881918\pi$$
$$488$$ 0 0
$$489$$ −20.0000 −0.904431
$$490$$ 0 0
$$491$$ 24.0000 1.08310 0.541552 0.840667i $$-0.317837\pi$$
0.541552 + 0.840667i $$0.317837\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 4.00000 0.179065 0.0895323 0.995984i $$-0.471463\pi$$
0.0895323 + 0.995984i $$0.471463\pi$$
$$500$$ 0 0
$$501$$ 18.0000 0.804181
$$502$$ 0 0
$$503$$ 42.0000i 1.87269i 0.351085 + 0.936344i $$0.385813\pi$$
−0.351085 + 0.936344i $$0.614187\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ − 3.00000i − 0.133235i
$$508$$ 0 0
$$509$$ 42.0000 1.86162 0.930809 0.365507i $$-0.119104\pi$$
0.930809 + 0.365507i $$0.119104\pi$$
$$510$$ 0 0
$$511$$ −32.0000 −1.41560
$$512$$ 0 0
$$513$$ 2.00000i 0.0883022i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 12.0000i 0.527759i
$$518$$ 0 0
$$519$$ 18.0000 0.790112
$$520$$ 0 0
$$521$$ 6.00000 0.262865 0.131432 0.991325i $$-0.458042\pi$$
0.131432 + 0.991325i $$0.458042\pi$$
$$522$$ 0 0
$$523$$ − 16.0000i − 0.699631i −0.936819 0.349816i $$-0.886244\pi$$
0.936819 0.349816i $$-0.113756\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ − 24.0000i − 1.04546i
$$528$$ 0 0
$$529$$ 23.0000 1.00000
$$530$$ 0 0
$$531$$ 12.0000 0.520756
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ − 12.0000i − 0.517838i
$$538$$ 0 0
$$539$$ 9.00000 0.387657
$$540$$ 0 0
$$541$$ 14.0000 0.601907 0.300954 0.953639i $$-0.402695\pi$$
0.300954 + 0.953639i $$0.402695\pi$$
$$542$$ 0 0
$$543$$ 2.00000i 0.0858282i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 8.00000i − 0.342055i −0.985266 0.171028i $$-0.945291\pi$$
0.985266 0.171028i $$-0.0547087\pi$$
$$548$$ 0 0
$$549$$ 10.0000 0.426790
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 40.0000i 1.70097i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 6.00000i 0.254228i 0.991888 + 0.127114i $$0.0405714\pi$$
−0.991888 + 0.127114i $$0.959429\pi$$
$$558$$ 0 0
$$559$$ −16.0000 −0.676728
$$560$$ 0 0
$$561$$ 6.00000 0.253320
$$562$$ 0 0
$$563$$ 18.0000i 0.758610i 0.925272 + 0.379305i $$0.123837\pi$$
−0.925272 + 0.379305i $$0.876163\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 4.00000i 0.167984i
$$568$$ 0 0
$$569$$ −24.0000 −1.00613 −0.503066 0.864248i $$-0.667795\pi$$
−0.503066 + 0.864248i $$0.667795\pi$$
$$570$$ 0 0
$$571$$ 2.00000 0.0836974 0.0418487 0.999124i $$-0.486675\pi$$
0.0418487 + 0.999124i $$0.486675\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 34.0000i 1.41544i 0.706494 + 0.707719i $$0.250276\pi$$
−0.706494 + 0.707719i $$0.749724\pi$$
$$578$$ 0 0
$$579$$ 4.00000 0.166234
$$580$$ 0 0
$$581$$ 24.0000 0.995688
$$582$$ 0 0
$$583$$ − 6.00000i − 0.248495i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ − 36.0000i − 1.48588i −0.669359 0.742940i $$-0.733431\pi$$
0.669359 0.742940i $$-0.266569\pi$$
$$588$$ 0 0
$$589$$ 8.00000 0.329634
$$590$$ 0 0
$$591$$ −18.0000 −0.740421
$$592$$ 0 0
$$593$$ 6.00000i 0.246390i 0.992382 + 0.123195i $$0.0393141\pi$$
−0.992382 + 0.123195i $$0.960686\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 16.0000i 0.654836i
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ −10.0000 −0.407909 −0.203954 0.978980i $$-0.565379\pi$$
−0.203954 + 0.978980i $$0.565379\pi$$
$$602$$ 0 0
$$603$$ − 4.00000i − 0.162893i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 40.0000i 1.62355i 0.583970 + 0.811775i $$0.301498\pi$$
−0.583970 + 0.811775i $$0.698502\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −48.0000 −1.94187
$$612$$ 0 0
$$613$$ 44.0000i 1.77714i 0.458738 + 0.888572i $$0.348302\pi$$
−0.458738 + 0.888572i $$0.651698\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 6.00000i 0.241551i 0.992680 + 0.120775i $$0.0385381\pi$$
−0.992680 + 0.120775i $$0.961462\pi$$
$$618$$ 0 0
$$619$$ 4.00000 0.160774 0.0803868 0.996764i $$-0.474384\pi$$
0.0803868 + 0.996764i $$0.474384\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 24.0000i 0.961540i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 2.00000i 0.0798723i
$$628$$ 0 0
$$629$$ −60.0000 −2.39236
$$630$$ 0 0
$$631$$ 8.00000 0.318475 0.159237 0.987240i $$-0.449096\pi$$
0.159237 + 0.987240i $$0.449096\pi$$
$$632$$ 0 0
$$633$$ − 22.0000i − 0.874421i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 36.0000i 1.42637i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −30.0000 −1.18493 −0.592464 0.805597i $$-0.701845\pi$$
−0.592464 + 0.805597i $$0.701845\pi$$
$$642$$ 0 0
$$643$$ − 4.00000i − 0.157745i −0.996885 0.0788723i $$-0.974868\pi$$
0.996885 0.0788723i $$-0.0251319\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 36.0000i 1.41531i 0.706560 + 0.707653i $$0.250246\pi$$
−0.706560 + 0.707653i $$0.749754\pi$$
$$648$$ 0 0
$$649$$ 12.0000 0.471041
$$650$$ 0 0
$$651$$ 16.0000 0.627089
$$652$$ 0 0
$$653$$ 18.0000i 0.704394i 0.935926 + 0.352197i $$0.114565\pi$$
−0.935926 + 0.352197i $$0.885435\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ − 8.00000i − 0.312110i
$$658$$ 0 0
$$659$$ −36.0000 −1.40236 −0.701180 0.712984i $$-0.747343\pi$$
−0.701180 + 0.712984i $$0.747343\pi$$
$$660$$ 0 0
$$661$$ 38.0000 1.47803 0.739014 0.673690i $$-0.235292\pi$$
0.739014 + 0.673690i $$0.235292\pi$$
$$662$$ 0 0
$$663$$ 24.0000i 0.932083i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ −8.00000 −0.309298
$$670$$ 0 0
$$671$$ 10.0000 0.386046
$$672$$ 0 0
$$673$$ 44.0000i 1.69608i 0.529936 + 0.848038i $$0.322216\pi$$
−0.529936 + 0.848038i $$0.677784\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ − 42.0000i − 1.61419i −0.590421 0.807096i $$-0.701038\pi$$
0.590421 0.807096i $$-0.298962\pi$$
$$678$$ 0 0
$$679$$ −40.0000 −1.53506
$$680$$ 0 0
$$681$$ −18.0000 −0.689761
$$682$$ 0 0
$$683$$ 24.0000i 0.918334i 0.888350 + 0.459167i $$0.151852\pi$$
−0.888350 + 0.459167i $$0.848148\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ − 26.0000i − 0.991962i
$$688$$ 0 0
$$689$$ 24.0000 0.914327
$$690$$ 0 0
$$691$$ 32.0000 1.21734 0.608669 0.793424i $$-0.291704\pi$$
0.608669 + 0.793424i $$0.291704\pi$$
$$692$$ 0 0
$$693$$ 4.00000i 0.151947i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 6.00000 0.226941
$$700$$ 0 0
$$701$$ 12.0000 0.453234 0.226617 0.973984i $$-0.427233\pi$$
0.226617 + 0.973984i $$0.427233\pi$$
$$702$$ 0 0
$$703$$ − 20.0000i − 0.754314i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 48.0000i − 1.80523i
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 0 0
$$711$$ −10.0000 −0.375029
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 24.0000 0.895049 0.447524 0.894272i $$-0.352306\pi$$
0.447524 + 0.894272i $$0.352306\pi$$
$$720$$ 0 0
$$721$$ 64.0000 2.38348
$$722$$ 0 0
$$723$$ − 22.0000i − 0.818189i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 8.00000i − 0.296704i −0.988935 0.148352i $$-0.952603\pi$$
0.988935 0.148352i $$-0.0473968\pi$$
$$728$$ 0 0
$$729$$ −1.00000 −0.0370370
$$730$$ 0 0
$$731$$ 24.0000 0.887672
$$732$$ 0 0
$$733$$ 32.0000i 1.18195i 0.806691 + 0.590973i $$0.201256\pi$$
−0.806691 + 0.590973i $$0.798744\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ − 4.00000i − 0.147342i
$$738$$ 0 0
$$739$$ 22.0000 0.809283 0.404642 0.914475i $$-0.367396\pi$$
0.404642 + 0.914475i $$0.367396\pi$$
$$740$$ 0 0
$$741$$ −8.00000 −0.293887
$$742$$ 0 0
$$743$$ − 6.00000i − 0.220119i −0.993925 0.110059i $$-0.964896\pi$$
0.993925 0.110059i $$-0.0351041\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 6.00000i 0.219529i
$$748$$ 0 0
$$749$$ 72.0000 2.63082
$$750$$ 0 0
$$751$$ 8.00000 0.291924 0.145962 0.989290i $$-0.453372\pi$$
0.145962 + 0.989290i $$0.453372\pi$$
$$752$$ 0 0
$$753$$ 12.0000i 0.437304i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 22.0000i 0.799604i 0.916602 + 0.399802i $$0.130921\pi$$
−0.916602 + 0.399802i $$0.869079\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −24.0000 −0.869999 −0.435000 0.900431i $$-0.643252\pi$$
−0.435000 + 0.900431i $$0.643252\pi$$
$$762$$ 0 0
$$763$$ − 56.0000i − 2.02734i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 48.0000i 1.73318i
$$768$$ 0 0
$$769$$ −14.0000 −0.504853 −0.252426 0.967616i $$-0.581229\pi$$
−0.252426 + 0.967616i $$0.581229\pi$$
$$770$$ 0 0
$$771$$ −18.0000 −0.648254
$$772$$ 0 0
$$773$$ − 6.00000i − 0.215805i −0.994161 0.107903i $$-0.965587\pi$$
0.994161 0.107903i $$-0.0344134\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ − 40.0000i − 1.43499i
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 20.0000i − 0.712923i −0.934310 0.356462i $$-0.883983\pi$$
0.934310 0.356462i $$-0.116017\pi$$
$$788$$ 0 0
$$789$$ 18.0000 0.640817
$$790$$ 0 0
$$791$$ 24.0000 0.853342
$$792$$ 0 0
$$793$$ 40.0000i 1.42044i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 18.0000i 0.637593i 0.947823 + 0.318796i $$0.103279\pi$$
−0.947823 + 0.318796i $$0.896721\pi$$
$$798$$ 0 0
$$799$$ 72.0000 2.54718
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ − 8.00000i − 0.282314i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ − 6.00000i − 0.211210i
$$808$$ 0 0
$$809$$ −36.0000 −1.26569 −0.632846 0.774277i $$-0.718114\pi$$
−0.632846 + 0.774277i $$0.718114\pi$$
$$810$$ 0 0
$$811$$ −10.0000 −0.351147 −0.175574 0.984466i $$-0.556178\pi$$
−0.175574 + 0.984466i $$0.556178\pi$$
$$812$$ 0 0
$$813$$ 2.00000i 0.0701431i
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 8.00000i 0.279885i
$$818$$ 0 0
$$819$$ −16.0000 −0.559085
$$820$$ 0 0
$$821$$ 24.0000 0.837606 0.418803 0.908077i $$-0.362450\pi$$
0.418803 + 0.908077i $$0.362450\pi$$
$$822$$ 0 0
$$823$$ 32.0000i 1.11545i 0.830026 + 0.557725i $$0.188326\pi$$
−0.830026 + 0.557725i $$0.811674\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 18.0000i − 0.625921i −0.949766 0.312961i $$-0.898679\pi$$
0.949766 0.312961i $$-0.101321\pi$$
$$828$$ 0 0
$$829$$ 34.0000 1.18087 0.590434 0.807086i $$-0.298956\pi$$
0.590434 + 0.807086i $$0.298956\pi$$
$$830$$ 0 0
$$831$$ −28.0000 −0.971309
$$832$$ 0 0
$$833$$ − 54.0000i − 1.87099i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 4.00000i 0.138260i
$$838$$ 0 0
$$839$$ 24.0000 0.828572 0.414286 0.910147i $$-0.364031\pi$$
0.414286 + 0.910147i $$0.364031\pi$$
$$840$$ 0 0
$$841$$ −29.0000 −1.00000
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 4.00000i 0.137442i
$$848$$ 0 0
$$849$$ 4.00000 0.137280
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ − 28.0000i − 0.958702i −0.877623 0.479351i $$-0.840872\pi$$
0.877623 0.479351i $$-0.159128\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 6.00000i 0.204956i 0.994735 + 0.102478i $$0.0326771\pi$$
−0.994735 + 0.102478i $$0.967323\pi$$
$$858$$ 0 0
$$859$$ −20.0000 −0.682391 −0.341196 0.939992i $$-0.610832\pi$$
−0.341196 + 0.939992i $$0.610832\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 36.0000i 1.22545i 0.790295 + 0.612727i $$0.209928\pi$$
−0.790295 + 0.612727i $$0.790072\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ − 19.0000i − 0.645274i
$$868$$ 0 0
$$869$$ −10.0000 −0.339227
$$870$$ 0 0
$$871$$ 16.0000 0.542139
$$872$$ 0 0
$$873$$ − 10.0000i − 0.338449i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 4.00000i 0.135070i 0.997717 + 0.0675352i $$0.0215135\pi$$
−0.997717 + 0.0675352i $$0.978487\pi$$
$$878$$ 0 0
$$879$$ −30.0000 −1.01187
$$880$$ 0 0
$$881$$ 30.0000 1.01073 0.505363 0.862907i $$-0.331359\pi$$
0.505363 + 0.862907i $$0.331359\pi$$
$$882$$ 0 0
$$883$$ 20.0000i 0.673054i 0.941674 + 0.336527i $$0.109252\pi$$
−0.941674 + 0.336527i $$0.890748\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ − 6.00000i − 0.201460i −0.994914 0.100730i $$-0.967882\pi$$
0.994914 0.100730i $$-0.0321179\pi$$
$$888$$ 0 0
$$889$$ 32.0000 1.07325
$$890$$ 0 0
$$891$$ −1.00000 −0.0335013
$$892$$ 0 0
$$893$$ 24.0000i 0.803129i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ −36.0000 −1.19933
$$902$$ 0 0
$$903$$ 16.0000i 0.532447i
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 28.0000i 0.929725i 0.885383 + 0.464862i $$0.153896\pi$$
−0.885383 + 0.464862i $$0.846104\pi$$
$$908$$ 0 0
$$909$$ 12.0000 0.398015
$$910$$ 0 0
$$911$$ 24.0000 0.795155 0.397578 0.917568i $$-0.369851\pi$$
0.397578 + 0.917568i $$0.369851\pi$$
$$912$$ 0 0
$$913$$ 6.00000i 0.198571i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ −38.0000 −1.25350 −0.626752 0.779219i $$-0.715616\pi$$
−0.626752 + 0.779219i $$0.715616\pi$$
$$920$$ 0 0
$$921$$ −16.0000 −0.527218
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 16.0000i 0.525509i
$$928$$ 0 0
$$929$$ −6.00000 −0.196854 −0.0984268 0.995144i $$-0.531381\pi$$
−0.0984268 + 0.995144i $$0.531381\pi$$
$$930$$ 0 0
$$931$$ 18.0000 0.589926
$$932$$ 0 0
$$933$$ − 24.0000i − 0.785725i
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 8.00000i − 0.261349i −0.991425 0.130674i $$-0.958286\pi$$
0.991425 0.130674i $$-0.0417142\pi$$
$$938$$ 0 0
$$939$$ 22.0000 0.717943
$$940$$ 0 0
$$941$$ 12.0000 0.391189 0.195594 0.980685i $$-0.437336\pi$$
0.195594 + 0.980685i $$0.437336\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 48.0000i 1.55979i 0.625910 + 0.779895i $$0.284728\pi$$
−0.625910 + 0.779895i $$0.715272\pi$$
$$948$$ 0 0
$$949$$ 32.0000 1.03876
$$950$$ 0 0
$$951$$ 6.00000 0.194563
$$952$$ 0 0
$$953$$ 30.0000i 0.971795i 0.874016 + 0.485898i $$0.161507\pi$$
−0.874016 + 0.485898i $$0.838493\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 24.0000 0.775000
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ 18.0000i 0.580042i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 8.00000i − 0.257263i −0.991692 0.128631i $$-0.958942\pi$$
0.991692 0.128631i $$-0.0410584\pi$$
$$968$$ 0 0
$$969$$ 12.0000 0.385496
$$970$$ 0 0
$$971$$ −36.0000 −1.15529 −0.577647 0.816286i $$-0.696029\pi$$
−0.577647 + 0.816286i $$0.696029\pi$$
$$972$$ 0 0
$$973$$ − 56.0000i − 1.79528i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ − 30.0000i − 0.959785i −0.877327 0.479893i $$-0.840676\pi$$
0.877327 0.479893i $$-0.159324\pi$$
$$978$$ 0 0
$$979$$ −6.00000 −0.191761
$$980$$ 0 0
$$981$$ 14.0000 0.446986
$$982$$ 0 0
$$983$$ − 36.0000i − 1.14822i −0.818778 0.574111i $$-0.805348\pi$$
0.818778 0.574111i $$-0.194652\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 48.0000i 1.52786i
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 44.0000 1.39771 0.698853 0.715265i $$-0.253694\pi$$
0.698853 + 0.715265i $$0.253694\pi$$
$$992$$ 0 0
$$993$$ − 28.0000i − 0.888553i
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ − 44.0000i − 1.39349i −0.717317 0.696747i $$-0.754630\pi$$
0.717317 0.696747i $$-0.245370\pi$$
$$998$$ 0 0
$$999$$ 10.0000 0.316386
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3300.2.c.b.1849.2 2
3.2 odd 2 9900.2.c.j.5149.2 2
5.2 odd 4 660.2.a.c.1.1 1
5.3 odd 4 3300.2.a.h.1.1 1
5.4 even 2 inner 3300.2.c.b.1849.1 2
15.2 even 4 1980.2.a.c.1.1 1
15.8 even 4 9900.2.a.bc.1.1 1
15.14 odd 2 9900.2.c.j.5149.1 2
20.7 even 4 2640.2.a.f.1.1 1
55.32 even 4 7260.2.a.p.1.1 1
60.47 odd 4 7920.2.a.bl.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.a.c.1.1 1 5.2 odd 4
1980.2.a.c.1.1 1 15.2 even 4
2640.2.a.f.1.1 1 20.7 even 4
3300.2.a.h.1.1 1 5.3 odd 4
3300.2.c.b.1849.1 2 5.4 even 2 inner
3300.2.c.b.1849.2 2 1.1 even 1 trivial
7260.2.a.p.1.1 1 55.32 even 4
7920.2.a.bl.1.1 1 60.47 odd 4
9900.2.a.bc.1.1 1 15.8 even 4
9900.2.c.j.5149.1 2 15.14 odd 2
9900.2.c.j.5149.2 2 3.2 odd 2