Defining parameters
Level: | \( N \) | \(=\) | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 330.s (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(330, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 48 | 272 |
Cusp forms | 256 | 48 | 208 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(330, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
330.2.s.a | \(8\) | \(2.635\) | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{20}q^{2}-\zeta_{20}^{3}q^{3}+\zeta_{20}^{2}q^{4}+(\zeta_{20}+\cdots)q^{5}+\cdots\) |
330.2.s.b | \(8\) | \(2.635\) | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(10\) | \(0\) | \(q+\zeta_{20}q^{2}-\zeta_{20}^{3}q^{3}+\zeta_{20}^{2}q^{4}+(2\zeta_{20}^{2}+\cdots)q^{5}+\cdots\) |
330.2.s.c | \(32\) | \(2.635\) | None | \(0\) | \(0\) | \(-2\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(330, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(330, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)