Properties

Label 330.2.m.b.91.1
Level $330$
Weight $2$
Character 330.91
Analytic conductor $2.635$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 330.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.63506326670\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 330.91
Dual form 330.2.m.b.301.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(0.809017 + 0.587785i) q^{6} +(-1.00000 + 3.07768i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(0.809017 + 0.587785i) q^{6} +(-1.00000 + 3.07768i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} -1.00000 q^{10} +(3.04508 - 1.31433i) q^{11} -1.00000 q^{12} +(-2.73607 + 1.98787i) q^{13} +(-1.00000 - 3.07768i) q^{14} +(0.309017 - 0.951057i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(4.92705 + 3.57971i) q^{17} +(0.309017 - 0.951057i) q^{18} +(0.381966 + 1.17557i) q^{19} +(0.809017 - 0.587785i) q^{20} +3.23607 q^{21} +(-1.69098 + 2.85317i) q^{22} +6.85410 q^{23} +(0.809017 - 0.587785i) q^{24} +(0.309017 + 0.951057i) q^{25} +(1.04508 - 3.21644i) q^{26} +(0.809017 + 0.587785i) q^{27} +(2.61803 + 1.90211i) q^{28} +(-0.809017 + 2.48990i) q^{29} +(0.309017 + 0.951057i) q^{30} +(1.11803 - 0.812299i) q^{31} +1.00000 q^{32} +(-2.19098 - 2.48990i) q^{33} -6.09017 q^{34} +(-2.61803 + 1.90211i) q^{35} +(0.309017 + 0.951057i) q^{36} +(-1.97214 + 6.06961i) q^{37} +(-1.00000 - 0.726543i) q^{38} +(2.73607 + 1.98787i) q^{39} +(-0.309017 + 0.951057i) q^{40} +(0.381966 + 1.17557i) q^{41} +(-2.61803 + 1.90211i) q^{42} -0.0901699 q^{43} +(-0.309017 - 3.30220i) q^{44} -1.00000 q^{45} +(-5.54508 + 4.02874i) q^{46} +(-1.33688 - 4.11450i) q^{47} +(-0.309017 + 0.951057i) q^{48} +(-2.80902 - 2.04087i) q^{49} +(-0.809017 - 0.587785i) q^{50} +(1.88197 - 5.79210i) q^{51} +(1.04508 + 3.21644i) q^{52} +(-6.85410 + 4.97980i) q^{53} -1.00000 q^{54} +(3.23607 + 0.726543i) q^{55} -3.23607 q^{56} +(1.00000 - 0.726543i) q^{57} +(-0.809017 - 2.48990i) q^{58} +(4.35410 - 13.4005i) q^{59} +(-0.809017 - 0.587785i) q^{60} +(-0.427051 + 1.31433i) q^{62} +(-1.00000 - 3.07768i) q^{63} +(-0.809017 + 0.587785i) q^{64} -3.38197 q^{65} +(3.23607 + 0.726543i) q^{66} -5.09017 q^{67} +(4.92705 - 3.57971i) q^{68} +(-2.11803 - 6.51864i) q^{69} +(1.00000 - 3.07768i) q^{70} +(-8.47214 - 6.15537i) q^{71} +(-0.809017 - 0.587785i) q^{72} +(4.14590 - 12.7598i) q^{73} +(-1.97214 - 6.06961i) q^{74} +(0.809017 - 0.587785i) q^{75} +1.23607 q^{76} +(1.00000 + 10.6861i) q^{77} -3.38197 q^{78} +(3.30902 - 2.40414i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(0.309017 - 0.951057i) q^{81} +(-1.00000 - 0.726543i) q^{82} +(-3.23607 - 2.35114i) q^{83} +(1.00000 - 3.07768i) q^{84} +(1.88197 + 5.79210i) q^{85} +(0.0729490 - 0.0530006i) q^{86} +2.61803 q^{87} +(2.19098 + 2.48990i) q^{88} +17.2361 q^{89} +(0.809017 - 0.587785i) q^{90} +(-3.38197 - 10.4086i) q^{91} +(2.11803 - 6.51864i) q^{92} +(-1.11803 - 0.812299i) q^{93} +(3.50000 + 2.54290i) q^{94} +(-0.381966 + 1.17557i) q^{95} +(-0.309017 - 0.951057i) q^{96} +(-15.0902 + 10.9637i) q^{97} +3.47214 q^{98} +(-1.69098 + 2.85317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 4q^{7} - q^{8} - q^{9} + O(q^{10}) \) \( 4q - q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 4q^{7} - q^{8} - q^{9} - 4q^{10} + q^{11} - 4q^{12} - 2q^{13} - 4q^{14} - q^{15} - q^{16} + 13q^{17} - q^{18} + 6q^{19} + q^{20} + 4q^{21} - 9q^{22} + 14q^{23} + q^{24} - q^{25} - 7q^{26} + q^{27} + 6q^{28} - q^{29} - q^{30} + 4q^{32} - 11q^{33} - 2q^{34} - 6q^{35} - q^{36} + 10q^{37} - 4q^{38} + 2q^{39} + q^{40} + 6q^{41} - 6q^{42} + 22q^{43} + q^{44} - 4q^{45} - 11q^{46} - 21q^{47} + q^{48} - 9q^{49} - q^{50} + 12q^{51} - 7q^{52} - 14q^{53} - 4q^{54} + 4q^{55} - 4q^{56} + 4q^{57} - q^{58} + 4q^{59} - q^{60} + 5q^{62} - 4q^{63} - q^{64} - 18q^{65} + 4q^{66} + 2q^{67} + 13q^{68} - 4q^{69} + 4q^{70} - 16q^{71} - q^{72} + 30q^{73} + 10q^{74} + q^{75} - 4q^{76} + 4q^{77} - 18q^{78} + 11q^{79} + q^{80} - q^{81} - 4q^{82} - 4q^{83} + 4q^{84} + 12q^{85} + 7q^{86} + 6q^{87} + 11q^{88} + 60q^{89} + q^{90} - 18q^{91} + 4q^{92} + 14q^{94} - 6q^{95} + q^{96} - 38q^{97} - 4q^{98} - 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/330\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(211\) \(221\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0.809017 + 0.587785i 0.330280 + 0.239962i
\(7\) −1.00000 + 3.07768i −0.377964 + 1.16326i 0.563492 + 0.826121i \(0.309457\pi\)
−0.941457 + 0.337134i \(0.890543\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −1.00000 −0.316228
\(11\) 3.04508 1.31433i 0.918128 0.396285i
\(12\) −1.00000 −0.288675
\(13\) −2.73607 + 1.98787i −0.758849 + 0.551336i −0.898557 0.438857i \(-0.855384\pi\)
0.139708 + 0.990193i \(0.455384\pi\)
\(14\) −1.00000 3.07768i −0.267261 0.822546i
\(15\) 0.309017 0.951057i 0.0797878 0.245562i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 4.92705 + 3.57971i 1.19499 + 0.868208i 0.993782 0.111342i \(-0.0355148\pi\)
0.201203 + 0.979550i \(0.435515\pi\)
\(18\) 0.309017 0.951057i 0.0728360 0.224166i
\(19\) 0.381966 + 1.17557i 0.0876290 + 0.269694i 0.985263 0.171048i \(-0.0547153\pi\)
−0.897634 + 0.440742i \(0.854715\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) 3.23607 0.706168
\(22\) −1.69098 + 2.85317i −0.360519 + 0.608298i
\(23\) 6.85410 1.42918 0.714590 0.699544i \(-0.246614\pi\)
0.714590 + 0.699544i \(0.246614\pi\)
\(24\) 0.809017 0.587785i 0.165140 0.119981i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 1.04508 3.21644i 0.204958 0.630796i
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) 2.61803 + 1.90211i 0.494762 + 0.359466i
\(29\) −0.809017 + 2.48990i −0.150231 + 0.462363i −0.997646 0.0685673i \(-0.978157\pi\)
0.847416 + 0.530930i \(0.178157\pi\)
\(30\) 0.309017 + 0.951057i 0.0564185 + 0.173638i
\(31\) 1.11803 0.812299i 0.200805 0.145893i −0.482839 0.875709i \(-0.660394\pi\)
0.683644 + 0.729816i \(0.260394\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.19098 2.48990i −0.381401 0.433436i
\(34\) −6.09017 −1.04446
\(35\) −2.61803 + 1.90211i −0.442529 + 0.321516i
\(36\) 0.309017 + 0.951057i 0.0515028 + 0.158509i
\(37\) −1.97214 + 6.06961i −0.324217 + 0.997838i 0.647576 + 0.762001i \(0.275783\pi\)
−0.971793 + 0.235837i \(0.924217\pi\)
\(38\) −1.00000 0.726543i −0.162221 0.117861i
\(39\) 2.73607 + 1.98787i 0.438122 + 0.318314i
\(40\) −0.309017 + 0.951057i −0.0488599 + 0.150375i
\(41\) 0.381966 + 1.17557i 0.0596531 + 0.183593i 0.976443 0.215778i \(-0.0692286\pi\)
−0.916789 + 0.399371i \(0.869229\pi\)
\(42\) −2.61803 + 1.90211i −0.403971 + 0.293502i
\(43\) −0.0901699 −0.0137508 −0.00687539 0.999976i \(-0.502189\pi\)
−0.00687539 + 0.999976i \(0.502189\pi\)
\(44\) −0.309017 3.30220i −0.0465861 0.497825i
\(45\) −1.00000 −0.149071
\(46\) −5.54508 + 4.02874i −0.817578 + 0.594005i
\(47\) −1.33688 4.11450i −0.195004 0.600161i −0.999977 0.00684879i \(-0.997820\pi\)
0.804972 0.593312i \(-0.202180\pi\)
\(48\) −0.309017 + 0.951057i −0.0446028 + 0.137273i
\(49\) −2.80902 2.04087i −0.401288 0.291553i
\(50\) −0.809017 0.587785i −0.114412 0.0831254i
\(51\) 1.88197 5.79210i 0.263528 0.811056i
\(52\) 1.04508 + 3.21644i 0.144927 + 0.446040i
\(53\) −6.85410 + 4.97980i −0.941483 + 0.684028i −0.948777 0.315946i \(-0.897678\pi\)
0.00729395 + 0.999973i \(0.497678\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.23607 + 0.726543i 0.436351 + 0.0979670i
\(56\) −3.23607 −0.432438
\(57\) 1.00000 0.726543i 0.132453 0.0962329i
\(58\) −0.809017 2.48990i −0.106229 0.326940i
\(59\) 4.35410 13.4005i 0.566856 1.74460i −0.0955164 0.995428i \(-0.530450\pi\)
0.662372 0.749175i \(-0.269550\pi\)
\(60\) −0.809017 0.587785i −0.104444 0.0758827i
\(61\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(62\) −0.427051 + 1.31433i −0.0542355 + 0.166920i
\(63\) −1.00000 3.07768i −0.125988 0.387752i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −3.38197 −0.419481
\(66\) 3.23607 + 0.726543i 0.398332 + 0.0894312i
\(67\) −5.09017 −0.621863 −0.310932 0.950432i \(-0.600641\pi\)
−0.310932 + 0.950432i \(0.600641\pi\)
\(68\) 4.92705 3.57971i 0.597493 0.434104i
\(69\) −2.11803 6.51864i −0.254981 0.784752i
\(70\) 1.00000 3.07768i 0.119523 0.367854i
\(71\) −8.47214 6.15537i −1.00546 0.730508i −0.0422061 0.999109i \(-0.513439\pi\)
−0.963251 + 0.268601i \(0.913439\pi\)
\(72\) −0.809017 0.587785i −0.0953436 0.0692712i
\(73\) 4.14590 12.7598i 0.485241 1.49342i −0.346391 0.938090i \(-0.612593\pi\)
0.831632 0.555327i \(-0.187407\pi\)
\(74\) −1.97214 6.06961i −0.229256 0.705578i
\(75\) 0.809017 0.587785i 0.0934172 0.0678716i
\(76\) 1.23607 0.141787
\(77\) 1.00000 + 10.6861i 0.113961 + 1.21780i
\(78\) −3.38197 −0.382932
\(79\) 3.30902 2.40414i 0.372293 0.270487i −0.385868 0.922554i \(-0.626098\pi\)
0.758161 + 0.652067i \(0.226098\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −1.00000 0.726543i −0.110432 0.0802332i
\(83\) −3.23607 2.35114i −0.355205 0.258071i 0.395845 0.918318i \(-0.370452\pi\)
−0.751049 + 0.660246i \(0.770452\pi\)
\(84\) 1.00000 3.07768i 0.109109 0.335803i
\(85\) 1.88197 + 5.79210i 0.204128 + 0.628241i
\(86\) 0.0729490 0.0530006i 0.00786629 0.00571520i
\(87\) 2.61803 0.280683
\(88\) 2.19098 + 2.48990i 0.233560 + 0.265424i
\(89\) 17.2361 1.82702 0.913510 0.406817i \(-0.133361\pi\)
0.913510 + 0.406817i \(0.133361\pi\)
\(90\) 0.809017 0.587785i 0.0852779 0.0619580i
\(91\) −3.38197 10.4086i −0.354526 1.09112i
\(92\) 2.11803 6.51864i 0.220820 0.679615i
\(93\) −1.11803 0.812299i −0.115935 0.0842315i
\(94\) 3.50000 + 2.54290i 0.360997 + 0.262280i
\(95\) −0.381966 + 1.17557i −0.0391889 + 0.120611i
\(96\) −0.309017 0.951057i −0.0315389 0.0970668i
\(97\) −15.0902 + 10.9637i −1.53217 + 1.11319i −0.577160 + 0.816631i \(0.695839\pi\)
−0.955015 + 0.296559i \(0.904161\pi\)
\(98\) 3.47214 0.350739
\(99\) −1.69098 + 2.85317i −0.169950 + 0.286754i
\(100\) 1.00000 0.100000
\(101\) −12.6353 + 9.18005i −1.25725 + 0.913449i −0.998620 0.0525259i \(-0.983273\pi\)
−0.258635 + 0.965975i \(0.583273\pi\)
\(102\) 1.88197 + 5.79210i 0.186342 + 0.573503i
\(103\) 2.09017 6.43288i 0.205951 0.633851i −0.793722 0.608280i \(-0.791860\pi\)
0.999673 0.0255706i \(-0.00814025\pi\)
\(104\) −2.73607 1.98787i −0.268294 0.194927i
\(105\) 2.61803 + 1.90211i 0.255494 + 0.185627i
\(106\) 2.61803 8.05748i 0.254286 0.782612i
\(107\) 1.94427 + 5.98385i 0.187960 + 0.578481i 0.999987 0.00513899i \(-0.00163580\pi\)
−0.812027 + 0.583620i \(0.801636\pi\)
\(108\) 0.809017 0.587785i 0.0778477 0.0565597i
\(109\) −2.47214 −0.236788 −0.118394 0.992967i \(-0.537775\pi\)
−0.118394 + 0.992967i \(0.537775\pi\)
\(110\) −3.04508 + 1.31433i −0.290337 + 0.125316i
\(111\) 6.38197 0.605749
\(112\) 2.61803 1.90211i 0.247381 0.179733i
\(113\) −6.04508 18.6049i −0.568674 1.75020i −0.656775 0.754086i \(-0.728080\pi\)
0.0881015 0.996112i \(-0.471920\pi\)
\(114\) −0.381966 + 1.17557i −0.0357744 + 0.110102i
\(115\) 5.54508 + 4.02874i 0.517082 + 0.375682i
\(116\) 2.11803 + 1.53884i 0.196655 + 0.142878i
\(117\) 1.04508 3.21644i 0.0966181 0.297360i
\(118\) 4.35410 + 13.4005i 0.400828 + 1.23362i
\(119\) −15.9443 + 11.5842i −1.46161 + 1.06192i
\(120\) 1.00000 0.0912871
\(121\) 7.54508 8.00448i 0.685917 0.727680i
\(122\) 0 0
\(123\) 1.00000 0.726543i 0.0901670 0.0655101i
\(124\) −0.427051 1.31433i −0.0383503 0.118030i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 2.61803 + 1.90211i 0.233233 + 0.169454i
\(127\) −11.8541 8.61251i −1.05188 0.764237i −0.0793121 0.996850i \(-0.525272\pi\)
−0.972569 + 0.232613i \(0.925272\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 0.0278640 + 0.0857567i 0.00245329 + 0.00755046i
\(130\) 2.73607 1.98787i 0.239969 0.174348i
\(131\) −3.38197 −0.295484 −0.147742 0.989026i \(-0.547200\pi\)
−0.147742 + 0.989026i \(0.547200\pi\)
\(132\) −3.04508 + 1.31433i −0.265041 + 0.114398i
\(133\) −4.00000 −0.346844
\(134\) 4.11803 2.99193i 0.355744 0.258463i
\(135\) 0.309017 + 0.951057i 0.0265959 + 0.0818539i
\(136\) −1.88197 + 5.79210i −0.161377 + 0.496668i
\(137\) 10.3541 + 7.52270i 0.884611 + 0.642707i 0.934467 0.356049i \(-0.115876\pi\)
−0.0498566 + 0.998756i \(0.515876\pi\)
\(138\) 5.54508 + 4.02874i 0.472029 + 0.342949i
\(139\) 2.70820 8.33499i 0.229707 0.706965i −0.768073 0.640363i \(-0.778784\pi\)
0.997780 0.0666024i \(-0.0212159\pi\)
\(140\) 1.00000 + 3.07768i 0.0845154 + 0.260112i
\(141\) −3.50000 + 2.54290i −0.294753 + 0.214151i
\(142\) 10.4721 0.878802
\(143\) −5.71885 + 9.64932i −0.478234 + 0.806917i
\(144\) 1.00000 0.0833333
\(145\) −2.11803 + 1.53884i −0.175893 + 0.127794i
\(146\) 4.14590 + 12.7598i 0.343117 + 1.05601i
\(147\) −1.07295 + 3.30220i −0.0884953 + 0.272361i
\(148\) 5.16312 + 3.75123i 0.424406 + 0.308349i
\(149\) 6.16312 + 4.47777i 0.504902 + 0.366833i 0.810886 0.585204i \(-0.198985\pi\)
−0.305984 + 0.952037i \(0.598985\pi\)
\(150\) −0.309017 + 0.951057i −0.0252311 + 0.0776534i
\(151\) 6.47214 + 19.9192i 0.526695 + 1.62100i 0.760940 + 0.648823i \(0.224738\pi\)
−0.234245 + 0.972178i \(0.575262\pi\)
\(152\) −1.00000 + 0.726543i −0.0811107 + 0.0589304i
\(153\) −6.09017 −0.492361
\(154\) −7.09017 8.05748i −0.571342 0.649290i
\(155\) 1.38197 0.111002
\(156\) 2.73607 1.98787i 0.219061 0.159157i
\(157\) −2.86475 8.81678i −0.228632 0.703656i −0.997903 0.0647330i \(-0.979380\pi\)
0.769271 0.638923i \(-0.220620\pi\)
\(158\) −1.26393 + 3.88998i −0.100553 + 0.309470i
\(159\) 6.85410 + 4.97980i 0.543566 + 0.394924i
\(160\) 0.809017 + 0.587785i 0.0639584 + 0.0464685i
\(161\) −6.85410 + 21.0948i −0.540179 + 1.66250i
\(162\) 0.309017 + 0.951057i 0.0242787 + 0.0747221i
\(163\) −0.690983 + 0.502029i −0.0541220 + 0.0393219i −0.614517 0.788903i \(-0.710649\pi\)
0.560395 + 0.828225i \(0.310649\pi\)
\(164\) 1.23607 0.0965207
\(165\) −0.309017 3.30220i −0.0240569 0.257076i
\(166\) 4.00000 0.310460
\(167\) 10.7361 7.80021i 0.830782 0.603598i −0.0889985 0.996032i \(-0.528367\pi\)
0.919780 + 0.392433i \(0.128367\pi\)
\(168\) 1.00000 + 3.07768i 0.0771517 + 0.237448i
\(169\) −0.482779 + 1.48584i −0.0371369 + 0.114295i
\(170\) −4.92705 3.57971i −0.377888 0.274551i
\(171\) −1.00000 0.726543i −0.0764719 0.0555601i
\(172\) −0.0278640 + 0.0857567i −0.00212461 + 0.00653889i
\(173\) −2.94427 9.06154i −0.223849 0.688936i −0.998406 0.0564325i \(-0.982027\pi\)
0.774558 0.632503i \(-0.217973\pi\)
\(174\) −2.11803 + 1.53884i −0.160568 + 0.116659i
\(175\) −3.23607 −0.244624
\(176\) −3.23607 0.726543i −0.243928 0.0547652i
\(177\) −14.0902 −1.05908
\(178\) −13.9443 + 10.1311i −1.04517 + 0.759359i
\(179\) 5.60739 + 17.2578i 0.419116 + 1.28991i 0.908517 + 0.417848i \(0.137215\pi\)
−0.489401 + 0.872059i \(0.662785\pi\)
\(180\) −0.309017 + 0.951057i −0.0230328 + 0.0708876i
\(181\) −17.7082 12.8658i −1.31624 0.956305i −0.999971 0.00763529i \(-0.997570\pi\)
−0.316270 0.948669i \(-0.602430\pi\)
\(182\) 8.85410 + 6.43288i 0.656310 + 0.476837i
\(183\) 0 0
\(184\) 2.11803 + 6.51864i 0.156144 + 0.480560i
\(185\) −5.16312 + 3.75123i −0.379600 + 0.275796i
\(186\) 1.38197 0.101331
\(187\) 19.7082 + 4.42477i 1.44121 + 0.323571i
\(188\) −4.32624 −0.315523
\(189\) −2.61803 + 1.90211i −0.190434 + 0.138358i
\(190\) −0.381966 1.17557i −0.0277107 0.0852848i
\(191\) 2.85410 8.78402i 0.206516 0.635590i −0.793132 0.609050i \(-0.791551\pi\)
0.999648 0.0265400i \(-0.00844895\pi\)
\(192\) 0.809017 + 0.587785i 0.0583858 + 0.0424197i
\(193\) 16.9443 + 12.3107i 1.21968 + 0.886146i 0.996073 0.0885344i \(-0.0282183\pi\)
0.223602 + 0.974680i \(0.428218\pi\)
\(194\) 5.76393 17.7396i 0.413826 1.27363i
\(195\) 1.04508 + 3.21644i 0.0748401 + 0.230334i
\(196\) −2.80902 + 2.04087i −0.200644 + 0.145776i
\(197\) 10.9443 0.779747 0.389874 0.920868i \(-0.372519\pi\)
0.389874 + 0.920868i \(0.372519\pi\)
\(198\) −0.309017 3.30220i −0.0219609 0.234677i
\(199\) 25.9787 1.84158 0.920791 0.390056i \(-0.127544\pi\)
0.920791 + 0.390056i \(0.127544\pi\)
\(200\) −0.809017 + 0.587785i −0.0572061 + 0.0415627i
\(201\) 1.57295 + 4.84104i 0.110947 + 0.341461i
\(202\) 4.82624 14.8536i 0.339573 1.04510i
\(203\) −6.85410 4.97980i −0.481064 0.349513i
\(204\) −4.92705 3.57971i −0.344963 0.250630i
\(205\) −0.381966 + 1.17557i −0.0266777 + 0.0821054i
\(206\) 2.09017 + 6.43288i 0.145629 + 0.448200i
\(207\) −5.54508 + 4.02874i −0.385410 + 0.280017i
\(208\) 3.38197 0.234497
\(209\) 2.70820 + 3.07768i 0.187330 + 0.212888i
\(210\) −3.23607 −0.223310
\(211\) 20.4164 14.8334i 1.40552 1.02117i 0.411569 0.911379i \(-0.364981\pi\)
0.993954 0.109794i \(-0.0350191\pi\)
\(212\) 2.61803 + 8.05748i 0.179807 + 0.553390i
\(213\) −3.23607 + 9.95959i −0.221732 + 0.682420i
\(214\) −5.09017 3.69822i −0.347957 0.252805i
\(215\) −0.0729490 0.0530006i −0.00497508 0.00361461i
\(216\) −0.309017 + 0.951057i −0.0210259 + 0.0647112i
\(217\) 1.38197 + 4.25325i 0.0938140 + 0.288730i
\(218\) 2.00000 1.45309i 0.135457 0.0984153i
\(219\) −13.4164 −0.906597
\(220\) 1.69098 2.85317i 0.114006 0.192361i
\(221\) −20.5967 −1.38549
\(222\) −5.16312 + 3.75123i −0.346526 + 0.251766i
\(223\) 2.23607 + 6.88191i 0.149738 + 0.460847i 0.997590 0.0693868i \(-0.0221043\pi\)
−0.847852 + 0.530234i \(0.822104\pi\)
\(224\) −1.00000 + 3.07768i −0.0668153 + 0.205636i
\(225\) −0.809017 0.587785i −0.0539345 0.0391857i
\(226\) 15.8262 + 11.4984i 1.05275 + 0.764865i
\(227\) 6.29180 19.3642i 0.417601 1.28524i −0.492302 0.870424i \(-0.663845\pi\)
0.909904 0.414820i \(-0.136155\pi\)
\(228\) −0.381966 1.17557i −0.0252963 0.0778541i
\(229\) −0.618034 + 0.449028i −0.0408408 + 0.0296726i −0.608018 0.793923i \(-0.708035\pi\)
0.567178 + 0.823596i \(0.308035\pi\)
\(230\) −6.85410 −0.451946
\(231\) 9.85410 4.25325i 0.648352 0.279844i
\(232\) −2.61803 −0.171882
\(233\) 3.59017 2.60841i 0.235200 0.170883i −0.463942 0.885865i \(-0.653565\pi\)
0.699142 + 0.714983i \(0.253565\pi\)
\(234\) 1.04508 + 3.21644i 0.0683193 + 0.210265i
\(235\) 1.33688 4.11450i 0.0872085 0.268400i
\(236\) −11.3992 8.28199i −0.742024 0.539112i
\(237\) −3.30902 2.40414i −0.214944 0.156166i
\(238\) 6.09017 18.7436i 0.394767 1.21497i
\(239\) −1.00000 3.07768i −0.0646846 0.199079i 0.913491 0.406859i \(-0.133376\pi\)
−0.978175 + 0.207780i \(0.933376\pi\)
\(240\) −0.809017 + 0.587785i −0.0522218 + 0.0379414i
\(241\) −23.8885 −1.53880 −0.769398 0.638769i \(-0.779444\pi\)
−0.769398 + 0.638769i \(0.779444\pi\)
\(242\) −1.39919 + 10.9106i −0.0899431 + 0.701363i
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −1.07295 3.30220i −0.0685482 0.210970i
\(246\) −0.381966 + 1.17557i −0.0243533 + 0.0749516i
\(247\) −3.38197 2.45714i −0.215189 0.156344i
\(248\) 1.11803 + 0.812299i 0.0709952 + 0.0515811i
\(249\) −1.23607 + 3.80423i −0.0783326 + 0.241083i
\(250\) −0.309017 0.951057i −0.0195440 0.0601501i
\(251\) −6.78115 + 4.92680i −0.428023 + 0.310977i −0.780858 0.624709i \(-0.785218\pi\)
0.352835 + 0.935685i \(0.385218\pi\)
\(252\) −3.23607 −0.203853
\(253\) 20.8713 9.00854i 1.31217 0.566362i
\(254\) 14.6525 0.919378
\(255\) 4.92705 3.57971i 0.308544 0.224170i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 9.38197 28.8747i 0.585231 1.80116i −0.0131100 0.999914i \(-0.504173\pi\)
0.598341 0.801242i \(-0.295827\pi\)
\(258\) −0.0729490 0.0530006i −0.00454161 0.00329967i
\(259\) −16.7082 12.1392i −1.03820 0.754294i
\(260\) −1.04508 + 3.21644i −0.0648134 + 0.199475i
\(261\) −0.809017 2.48990i −0.0500769 0.154121i
\(262\) 2.73607 1.98787i 0.169035 0.122811i
\(263\) 6.85410 0.422642 0.211321 0.977417i \(-0.432223\pi\)
0.211321 + 0.977417i \(0.432223\pi\)
\(264\) 1.69098 2.85317i 0.104073 0.175600i
\(265\) −8.47214 −0.520439
\(266\) 3.23607 2.35114i 0.198416 0.144158i
\(267\) −5.32624 16.3925i −0.325960 1.00320i
\(268\) −1.57295 + 4.84104i −0.0960832 + 0.295714i
\(269\) −2.59017 1.88187i −0.157925 0.114740i 0.506016 0.862524i \(-0.331118\pi\)
−0.663942 + 0.747784i \(0.731118\pi\)
\(270\) −0.809017 0.587785i −0.0492352 0.0357715i
\(271\) −1.97214 + 6.06961i −0.119799 + 0.368703i −0.992918 0.118805i \(-0.962094\pi\)
0.873119 + 0.487507i \(0.162094\pi\)
\(272\) −1.88197 5.79210i −0.114111 0.351197i
\(273\) −8.85410 + 6.43288i −0.535875 + 0.389336i
\(274\) −12.7984 −0.773178
\(275\) 2.19098 + 2.48990i 0.132121 + 0.150147i
\(276\) −6.85410 −0.412568
\(277\) 19.0172 13.8168i 1.14263 0.830172i 0.155150 0.987891i \(-0.450414\pi\)
0.987484 + 0.157719i \(0.0504139\pi\)
\(278\) 2.70820 + 8.33499i 0.162427 + 0.499900i
\(279\) −0.427051 + 1.31433i −0.0255669 + 0.0786867i
\(280\) −2.61803 1.90211i −0.156457 0.113673i
\(281\) 6.09017 + 4.42477i 0.363309 + 0.263959i 0.754431 0.656379i \(-0.227913\pi\)
−0.391122 + 0.920339i \(0.627913\pi\)
\(282\) 1.33688 4.11450i 0.0796101 0.245015i
\(283\) −6.89919 21.2335i −0.410114 1.26220i −0.916549 0.399923i \(-0.869037\pi\)
0.506435 0.862278i \(-0.330963\pi\)
\(284\) −8.47214 + 6.15537i −0.502729 + 0.365254i
\(285\) 1.23607 0.0732183
\(286\) −1.04508 11.1679i −0.0617972 0.660373i
\(287\) −4.00000 −0.236113
\(288\) −0.809017 + 0.587785i −0.0476718 + 0.0346356i
\(289\) 6.20820 + 19.1069i 0.365188 + 1.12393i
\(290\) 0.809017 2.48990i 0.0475071 0.146212i
\(291\) 15.0902 + 10.9637i 0.884601 + 0.642701i
\(292\) −10.8541 7.88597i −0.635188 0.461491i
\(293\) −6.18034 + 19.0211i −0.361059 + 1.11123i 0.591353 + 0.806413i \(0.298594\pi\)
−0.952412 + 0.304813i \(0.901406\pi\)
\(294\) −1.07295 3.30220i −0.0625757 0.192588i
\(295\) 11.3992 8.28199i 0.663686 0.482196i
\(296\) −6.38197 −0.370944
\(297\) 3.23607 + 0.726543i 0.187776 + 0.0421583i
\(298\) −7.61803 −0.441301
\(299\) −18.7533 + 13.6251i −1.08453 + 0.787958i
\(300\) −0.309017 0.951057i −0.0178411 0.0549093i
\(301\) 0.0901699 0.277515i 0.00519731 0.0159957i
\(302\) −16.9443 12.3107i −0.975033 0.708403i
\(303\) 12.6353 + 9.18005i 0.725876 + 0.527380i
\(304\) 0.381966 1.17557i 0.0219073 0.0674236i
\(305\) 0 0
\(306\) 4.92705 3.57971i 0.281661 0.204639i
\(307\) −33.4508 −1.90914 −0.954570 0.297985i \(-0.903685\pi\)
−0.954570 + 0.297985i \(0.903685\pi\)
\(308\) 10.4721 + 2.35114i 0.596705 + 0.133969i
\(309\) −6.76393 −0.384787
\(310\) −1.11803 + 0.812299i −0.0635001 + 0.0461355i
\(311\) 2.85410 + 8.78402i 0.161841 + 0.498096i 0.998790 0.0491856i \(-0.0156626\pi\)
−0.836948 + 0.547282i \(0.815663\pi\)
\(312\) −1.04508 + 3.21644i −0.0591663 + 0.182095i
\(313\) −6.85410 4.97980i −0.387417 0.281475i 0.376979 0.926222i \(-0.376963\pi\)
−0.764396 + 0.644747i \(0.776963\pi\)
\(314\) 7.50000 + 5.44907i 0.423249 + 0.307509i
\(315\) 1.00000 3.07768i 0.0563436 0.173408i
\(316\) −1.26393 3.88998i −0.0711017 0.218829i
\(317\) 22.1803 16.1150i 1.24577 0.905106i 0.247803 0.968810i \(-0.420291\pi\)
0.997969 + 0.0637041i \(0.0202914\pi\)
\(318\) −8.47214 −0.475094
\(319\) 0.809017 + 8.64527i 0.0452963 + 0.484042i
\(320\) −1.00000 −0.0559017
\(321\) 5.09017 3.69822i 0.284106 0.206415i
\(322\) −6.85410 21.0948i −0.381964 1.17556i
\(323\) −2.32624 + 7.15942i −0.129435 + 0.398361i
\(324\) −0.809017 0.587785i −0.0449454 0.0326547i
\(325\) −2.73607 1.98787i −0.151770 0.110267i
\(326\) 0.263932 0.812299i 0.0146178 0.0449891i
\(327\) 0.763932 + 2.35114i 0.0422455 + 0.130018i
\(328\) −1.00000 + 0.726543i −0.0552158 + 0.0401166i
\(329\) 14.0000 0.771845
\(330\) 2.19098 + 2.48990i 0.120610 + 0.137064i
\(331\) 9.23607 0.507660 0.253830 0.967249i \(-0.418310\pi\)
0.253830 + 0.967249i \(0.418310\pi\)
\(332\) −3.23607 + 2.35114i −0.177602 + 0.129036i
\(333\) −1.97214 6.06961i −0.108072 0.332613i
\(334\) −4.10081 + 12.6210i −0.224387 + 0.690591i
\(335\) −4.11803 2.99193i −0.224992 0.163466i
\(336\) −2.61803 1.90211i −0.142825 0.103769i
\(337\) −4.70820 + 14.4904i −0.256472 + 0.789340i 0.737064 + 0.675823i \(0.236212\pi\)
−0.993536 + 0.113517i \(0.963788\pi\)
\(338\) −0.482779 1.48584i −0.0262597 0.0808191i
\(339\) −15.8262 + 11.4984i −0.859563 + 0.624509i
\(340\) 6.09017 0.330286
\(341\) 2.33688 3.94298i 0.126549 0.213525i
\(342\) 1.23607 0.0668389
\(343\) −9.23607 + 6.71040i −0.498701 + 0.362327i
\(344\) −0.0278640 0.0857567i −0.00150233 0.00462369i
\(345\) 2.11803 6.51864i 0.114031 0.350952i
\(346\) 7.70820 + 5.60034i 0.414396 + 0.301076i
\(347\) −29.0344 21.0948i −1.55865 1.13243i −0.937105 0.349048i \(-0.886505\pi\)
−0.621546 0.783378i \(-0.713495\pi\)
\(348\) 0.809017 2.48990i 0.0433679 0.133473i
\(349\) −3.52786 10.8576i −0.188842 0.581197i 0.811151 0.584837i \(-0.198841\pi\)
−0.999993 + 0.00363995i \(0.998841\pi\)
\(350\) 2.61803 1.90211i 0.139940 0.101672i
\(351\) −3.38197 −0.180516
\(352\) 3.04508 1.31433i 0.162304 0.0700539i
\(353\) 23.6180 1.25706 0.628531 0.777785i \(-0.283657\pi\)
0.628531 + 0.777785i \(0.283657\pi\)
\(354\) 11.3992 8.28199i 0.605860 0.440183i
\(355\) −3.23607 9.95959i −0.171753 0.528600i
\(356\) 5.32624 16.3925i 0.282290 0.868799i
\(357\) 15.9443 + 11.5842i 0.843860 + 0.613100i
\(358\) −14.6803 10.6659i −0.775880 0.563710i
\(359\) −3.76393 + 11.5842i −0.198653 + 0.611390i 0.801262 + 0.598314i \(0.204162\pi\)
−0.999915 + 0.0130763i \(0.995838\pi\)
\(360\) −0.309017 0.951057i −0.0162866 0.0501251i
\(361\) 14.1353 10.2699i 0.743961 0.540519i
\(362\) 21.8885 1.15044
\(363\) −9.94427 4.70228i −0.521939 0.246806i
\(364\) −10.9443 −0.573636
\(365\) 10.8541 7.88597i 0.568130 0.412770i
\(366\) 0 0
\(367\) −8.27051 + 25.4540i −0.431717 + 1.32869i 0.464696 + 0.885470i \(0.346163\pi\)
−0.896414 + 0.443219i \(0.853837\pi\)
\(368\) −5.54508 4.02874i −0.289058 0.210013i
\(369\) −1.00000 0.726543i −0.0520579 0.0378223i
\(370\) 1.97214 6.06961i 0.102526 0.315544i
\(371\) −8.47214 26.0746i −0.439851 1.35372i
\(372\) −1.11803 + 0.812299i −0.0579674 + 0.0421158i
\(373\) −11.5279 −0.596890 −0.298445 0.954427i \(-0.596468\pi\)
−0.298445 + 0.954427i \(0.596468\pi\)
\(374\) −18.5451 + 8.00448i −0.958944 + 0.413902i
\(375\) 1.00000 0.0516398
\(376\) 3.50000 2.54290i 0.180499 0.131140i
\(377\) −2.73607 8.42075i −0.140915 0.433691i
\(378\) 1.00000 3.07768i 0.0514344 0.158299i
\(379\) 10.0000 + 7.26543i 0.513665 + 0.373200i 0.814212 0.580567i \(-0.197169\pi\)
−0.300547 + 0.953767i \(0.597169\pi\)
\(380\) 1.00000 + 0.726543i 0.0512989 + 0.0372708i
\(381\) −4.52786 + 13.9353i −0.231970 + 0.713929i
\(382\) 2.85410 + 8.78402i 0.146029 + 0.449430i
\(383\) 0.263932 0.191758i 0.0134863 0.00979837i −0.581022 0.813888i \(-0.697347\pi\)
0.594508 + 0.804090i \(0.297347\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −5.47214 + 9.23305i −0.278886 + 0.470560i
\(386\) −20.9443 −1.06604
\(387\) 0.0729490 0.0530006i 0.00370821 0.00269417i
\(388\) 5.76393 + 17.7396i 0.292619 + 0.900590i
\(389\) 2.11803 6.51864i 0.107389 0.330508i −0.882895 0.469570i \(-0.844409\pi\)
0.990284 + 0.139062i \(0.0444088\pi\)
\(390\) −2.73607 1.98787i −0.138546 0.100660i
\(391\) 33.7705 + 24.5357i 1.70785 + 1.24082i
\(392\) 1.07295 3.30220i 0.0541921 0.166786i
\(393\) 1.04508 + 3.21644i 0.0527176 + 0.162248i
\(394\) −8.85410 + 6.43288i −0.446063 + 0.324084i
\(395\) 4.09017 0.205799
\(396\) 2.19098 + 2.48990i 0.110101 + 0.125122i
\(397\) 2.20163 0.110496 0.0552482 0.998473i \(-0.482405\pi\)
0.0552482 + 0.998473i \(0.482405\pi\)
\(398\) −21.0172 + 15.2699i −1.05350 + 0.765411i
\(399\) 1.23607 + 3.80423i 0.0618808 + 0.190450i
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) −17.8541 12.9718i −0.891591 0.647779i 0.0447011 0.999000i \(-0.485766\pi\)
−0.936292 + 0.351221i \(0.885766\pi\)
\(402\) −4.11803 2.99193i −0.205389 0.149224i
\(403\) −1.44427 + 4.44501i −0.0719443 + 0.221422i
\(404\) 4.82624 + 14.8536i 0.240114 + 0.738996i
\(405\) 0.809017 0.587785i 0.0402004 0.0292073i
\(406\) 8.47214 0.420465
\(407\) 1.97214 + 21.0745i 0.0977551 + 1.04462i
\(408\) 6.09017 0.301508
\(409\) −10.5000 + 7.62870i −0.519192 + 0.377215i −0.816299 0.577629i \(-0.803978\pi\)
0.297108 + 0.954844i \(0.403978\pi\)
\(410\) −0.381966 1.17557i −0.0188640 0.0580573i
\(411\) 3.95492 12.1720i 0.195082 0.600399i
\(412\) −5.47214 3.97574i −0.269593 0.195871i
\(413\) 36.8885 + 26.8011i 1.81517 + 1.31880i
\(414\) 2.11803 6.51864i 0.104096 0.320374i
\(415\) −1.23607 3.80423i −0.0606762 0.186742i
\(416\) −2.73607 + 1.98787i −0.134147 + 0.0974633i
\(417\) −8.76393 −0.429172
\(418\) −4.00000 0.898056i −0.195646 0.0439254i
\(419\) 22.8541 1.11650 0.558248 0.829674i \(-0.311474\pi\)
0.558248 + 0.829674i \(0.311474\pi\)
\(420\) 2.61803 1.90211i 0.127747 0.0928136i
\(421\) −0.763932 2.35114i −0.0372318 0.114588i 0.930713 0.365750i \(-0.119187\pi\)
−0.967945 + 0.251162i \(0.919187\pi\)
\(422\) −7.79837 + 24.0009i −0.379619 + 1.16835i
\(423\) 3.50000 + 2.54290i 0.170176 + 0.123640i
\(424\) −6.85410 4.97980i −0.332865 0.241840i
\(425\) −1.88197 + 5.79210i −0.0912888 + 0.280958i
\(426\) −3.23607 9.95959i −0.156788 0.482544i
\(427\) 0 0
\(428\) 6.29180 0.304125
\(429\) 10.9443 + 2.45714i 0.528394 + 0.118632i
\(430\) 0.0901699 0.00434838
\(431\) −18.0902 + 13.1433i −0.871373 + 0.633089i −0.930955 0.365134i \(-0.881023\pi\)
0.0595822 + 0.998223i \(0.481023\pi\)
\(432\) −0.309017 0.951057i −0.0148676 0.0457577i
\(433\) −7.05573 + 21.7153i −0.339077 + 1.04357i 0.625602 + 0.780142i \(0.284853\pi\)
−0.964679 + 0.263428i \(0.915147\pi\)
\(434\) −3.61803 2.62866i −0.173671 0.126180i
\(435\) 2.11803 + 1.53884i 0.101552 + 0.0737818i
\(436\) −0.763932 + 2.35114i −0.0365857 + 0.112599i
\(437\) 2.61803 + 8.05748i 0.125238 + 0.385442i
\(438\) 10.8541 7.88597i 0.518629 0.376806i
\(439\) 1.67376 0.0798843 0.0399422 0.999202i \(-0.487283\pi\)
0.0399422 + 0.999202i \(0.487283\pi\)
\(440\) 0.309017 + 3.30220i 0.0147318 + 0.157426i
\(441\) 3.47214 0.165340
\(442\) 16.6631 12.1065i 0.792584 0.575846i
\(443\) −5.76393 17.7396i −0.273853 0.842832i −0.989521 0.144391i \(-0.953878\pi\)
0.715668 0.698441i \(-0.246122\pi\)
\(444\) 1.97214 6.06961i 0.0935934 0.288051i
\(445\) 13.9443 + 10.1311i 0.661022 + 0.480261i
\(446\) −5.85410 4.25325i −0.277200 0.201397i
\(447\) 2.35410 7.24518i 0.111345 0.342685i
\(448\) −1.00000 3.07768i −0.0472456 0.145407i
\(449\) 9.00000 6.53888i 0.424736 0.308589i −0.354804 0.934941i \(-0.615453\pi\)
0.779541 + 0.626352i \(0.215453\pi\)
\(450\) 1.00000 0.0471405
\(451\) 2.70820 + 3.07768i 0.127524 + 0.144922i
\(452\) −19.5623 −0.920133
\(453\) 16.9443 12.3107i 0.796111 0.578409i
\(454\) 6.29180 + 19.3642i 0.295289 + 0.908805i
\(455\) 3.38197 10.4086i 0.158549 0.487964i
\(456\) 1.00000 + 0.726543i 0.0468293 + 0.0340235i
\(457\) −3.76393 2.73466i −0.176069 0.127922i 0.496260 0.868174i \(-0.334706\pi\)
−0.672330 + 0.740252i \(0.734706\pi\)
\(458\) 0.236068 0.726543i 0.0110307 0.0339491i
\(459\) 1.88197 + 5.79210i 0.0878427 + 0.270352i
\(460\) 5.54508 4.02874i 0.258541 0.187841i
\(461\) 23.2148 1.08122 0.540610 0.841273i \(-0.318193\pi\)
0.540610 + 0.841273i \(0.318193\pi\)
\(462\) −5.47214 + 9.23305i −0.254587 + 0.429560i
\(463\) 11.8885 0.552507 0.276254 0.961085i \(-0.410907\pi\)
0.276254 + 0.961085i \(0.410907\pi\)
\(464\) 2.11803 1.53884i 0.0983273 0.0714389i
\(465\) −0.427051 1.31433i −0.0198040 0.0609505i
\(466\) −1.37132 + 4.22050i −0.0635253 + 0.195511i
\(467\) −23.0902 16.7760i −1.06849 0.776300i −0.0928462 0.995680i \(-0.529596\pi\)
−0.975639 + 0.219380i \(0.929596\pi\)
\(468\) −2.73607 1.98787i −0.126475 0.0918893i
\(469\) 5.09017 15.6659i 0.235042 0.723386i
\(470\) 1.33688 + 4.11450i 0.0616657 + 0.189788i
\(471\) −7.50000 + 5.44907i −0.345582 + 0.251080i
\(472\) 14.0902 0.648553
\(473\) −0.274575 + 0.118513i −0.0126250 + 0.00544923i
\(474\) 4.09017 0.187868
\(475\) −1.00000 + 0.726543i −0.0458831 + 0.0333361i
\(476\) 6.09017 + 18.7436i 0.279142 + 0.859112i
\(477\) 2.61803 8.05748i 0.119872 0.368927i
\(478\) 2.61803 + 1.90211i 0.119746 + 0.0870006i
\(479\) −10.3262 7.50245i −0.471818 0.342796i 0.326331 0.945255i \(-0.394187\pi\)
−0.798149 + 0.602460i \(0.794187\pi\)
\(480\) 0.309017 0.951057i 0.0141046 0.0434096i
\(481\) −6.66970 20.5272i −0.304112 0.935960i
\(482\) 19.3262 14.0413i 0.880286 0.639565i
\(483\) 22.1803 1.00924
\(484\) −5.28115 9.64932i −0.240052 0.438606i
\(485\) −18.6525 −0.846965
\(486\) 0.809017 0.587785i 0.0366978 0.0266625i
\(487\) 3.52786 + 10.8576i 0.159863 + 0.492007i 0.998621 0.0524969i \(-0.0167180\pi\)
−0.838758 + 0.544504i \(0.816718\pi\)
\(488\) 0 0
\(489\) 0.690983 + 0.502029i 0.0312473 + 0.0227025i
\(490\) 2.80902 + 2.04087i 0.126898 + 0.0921971i
\(491\) 8.66312 26.6623i 0.390961 1.20325i −0.541102 0.840957i \(-0.681993\pi\)
0.932063 0.362297i \(-0.118007\pi\)
\(492\) −0.381966 1.17557i −0.0172204 0.0529988i
\(493\) −12.8992 + 9.37181i −0.580950 + 0.422085i
\(494\) 4.18034 0.188082
\(495\) −3.04508 + 1.31433i −0.136866 + 0.0590746i
\(496\) −1.38197 −0.0620521
\(497\) 27.4164 19.9192i 1.22979 0.893498i
\(498\) −1.23607 3.80423i −0.0553895 0.170471i
\(499\) −10.0344 + 30.8828i −0.449203 + 1.38251i 0.428604 + 0.903492i \(0.359005\pi\)
−0.877808 + 0.479013i \(0.840995\pi\)
\(500\) 0.809017 + 0.587785i 0.0361803 + 0.0262866i
\(501\) −10.7361 7.80021i −0.479652 0.348488i
\(502\) 2.59017 7.97172i 0.115605 0.355795i
\(503\) −7.51722 23.1356i −0.335176 1.03157i −0.966635 0.256157i \(-0.917544\pi\)
0.631459 0.775409i \(-0.282456\pi\)
\(504\) 2.61803 1.90211i 0.116617 0.0847268i
\(505\) −15.6180 −0.694993
\(506\) −11.5902 + 19.5559i −0.515246 + 0.869366i
\(507\) 1.56231 0.0693844
\(508\) −11.8541 + 8.61251i −0.525941 + 0.382118i
\(509\) 2.71885 + 8.36775i 0.120511 + 0.370894i 0.993056 0.117638i \(-0.0375324\pi\)
−0.872546 + 0.488532i \(0.837532\pi\)
\(510\) −1.88197 + 5.79210i −0.0833349 + 0.256478i
\(511\) 35.1246 + 25.5195i 1.55382 + 1.12892i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) −0.381966 + 1.17557i −0.0168642 + 0.0519027i
\(514\) 9.38197 + 28.8747i 0.413821 + 1.27361i
\(515\) 5.47214 3.97574i 0.241131 0.175192i
\(516\) 0.0901699 0.00396951
\(517\) −9.47871 10.7719i −0.416873 0.473747i
\(518\) 20.6525 0.907418
\(519\) −7.70820 + 5.60034i −0.338353 + 0.245828i
\(520\) −1.04508 3.21644i −0.0458300 0.141050i
\(521\) −0.729490 + 2.24514i −0.0319595 + 0.0983614i −0.965764 0.259423i \(-0.916468\pi\)
0.933804 + 0.357784i \(0.116468\pi\)
\(522\) 2.11803 + 1.53884i 0.0927038 + 0.0673533i
\(523\) −31.4164 22.8254i −1.37374 0.998083i −0.997434 0.0715891i \(-0.977193\pi\)
−0.376309 0.926494i \(-0.622807\pi\)
\(524\) −1.04508 + 3.21644i −0.0456547 + 0.140511i
\(525\) 1.00000 + 3.07768i 0.0436436 + 0.134321i
\(526\) −5.54508 + 4.02874i −0.241777 + 0.175661i
\(527\) 8.41641 0.366624
\(528\) 0.309017 + 3.30220i 0.0134482 + 0.143710i
\(529\) 23.9787 1.04255
\(530\) 6.85410 4.97980i 0.297723 0.216309i
\(531\) 4.35410 + 13.4005i 0.188952 + 0.581534i
\(532\) −1.23607 + 3.80423i −0.0535903 + 0.164934i
\(533\) −3.38197 2.45714i −0.146489 0.106431i
\(534\) 13.9443 + 10.1311i 0.603428 + 0.438416i
\(535\) −1.94427 + 5.98385i −0.0840582 + 0.258705i
\(536\) −1.57295 4.84104i −0.0679410 0.209101i
\(537\) 14.6803 10.6659i 0.633503 0.460267i
\(538\) 3.20163 0.138032
\(539\) −11.2361 2.52265i −0.483972 0.108658i
\(540\) 1.00000 0.0430331
\(541\) −21.0902 + 15.3229i −0.906737 + 0.658783i −0.940188 0.340657i \(-0.889350\pi\)
0.0334503 + 0.999440i \(0.489350\pi\)
\(542\) −1.97214 6.06961i −0.0847105 0.260712i
\(543\) −6.76393 + 20.8172i −0.290268 + 0.893353i
\(544\) 4.92705 + 3.57971i 0.211246 + 0.153479i
\(545\) −2.00000 1.45309i −0.0856706 0.0622433i
\(546\) 3.38197 10.4086i 0.144735 0.445448i
\(547\) 10.6074 + 32.6462i 0.453539 + 1.39585i 0.872842 + 0.488004i \(0.162275\pi\)
−0.419302 + 0.907847i \(0.637725\pi\)
\(548\) 10.3541 7.52270i 0.442305 0.321354i
\(549\) 0 0
\(550\) −3.23607 0.726543i −0.137986 0.0309799i
\(551\) −3.23607 −0.137861
\(552\) 5.54508 4.02874i 0.236014 0.171475i
\(553\) 4.09017 + 12.5882i 0.173932 + 0.535307i
\(554\) −7.26393 + 22.3561i −0.308615 + 0.949819i
\(555\) 5.16312 + 3.75123i 0.219162 + 0.159231i
\(556\) −7.09017 5.15131i −0.300690 0.218464i
\(557\) −10.8541 + 33.4055i −0.459903 + 1.41544i 0.405378 + 0.914149i \(0.367140\pi\)
−0.865281 + 0.501287i \(0.832860\pi\)
\(558\) −0.427051 1.31433i −0.0180785 0.0556399i
\(559\) 0.246711 0.179246i 0.0104348 0.00758130i
\(560\) 3.23607 0.136749
\(561\) −1.88197 20.1109i −0.0794567 0.849085i
\(562\) −7.52786 −0.317544
\(563\) −13.7984 + 10.0251i −0.581532 + 0.422508i −0.839276 0.543705i \(-0.817021\pi\)
0.257744 + 0.966213i \(0.417021\pi\)
\(564\) 1.33688 + 4.11450i 0.0562928 + 0.173252i
\(565\) 6.04508 18.6049i 0.254319 0.782712i
\(566\) 18.0623 + 13.1230i 0.759215 + 0.551602i
\(567\) 2.61803 + 1.90211i 0.109947 + 0.0798812i
\(568\) 3.23607 9.95959i 0.135782 0.417895i
\(569\) −7.85410 24.1724i −0.329261 1.01336i −0.969480 0.245169i \(-0.921156\pi\)
0.640219 0.768192i \(-0.278844\pi\)
\(570\) −1.00000 + 0.726543i −0.0418854 + 0.0304315i
\(571\) −28.3607 −1.18686 −0.593429 0.804887i \(-0.702226\pi\)
−0.593429 + 0.804887i \(0.702226\pi\)
\(572\) 7.40983 + 8.42075i 0.309821 + 0.352089i
\(573\) −9.23607 −0.385842
\(574\) 3.23607 2.35114i 0.135071 0.0981347i
\(575\) 2.11803 + 6.51864i 0.0883281 + 0.271846i
\(576\) 0.309017 0.951057i 0.0128757 0.0396274i
\(577\) −13.7984 10.0251i −0.574434 0.417351i 0.262279 0.964992i \(-0.415526\pi\)
−0.836713 + 0.547641i \(0.815526\pi\)
\(578\) −16.2533 11.8087i −0.676048 0.491177i
\(579\) 6.47214 19.9192i 0.268973 0.827813i
\(580\) 0.809017 + 2.48990i 0.0335926 + 0.103387i
\(581\) 10.4721 7.60845i 0.434457 0.315652i
\(582\) −18.6525 −0.773170
\(583\) −14.3262 + 24.1724i −0.593332 + 1.00112i
\(584\) 13.4164 0.555175
\(585\) 2.73607 1.98787i 0.113122 0.0821883i
\(586\) −6.18034 19.0211i −0.255307 0.785756i
\(587\) −8.12461 + 25.0050i −0.335339 + 1.03207i 0.631216 + 0.775607i \(0.282556\pi\)
−0.966555 + 0.256459i \(0.917444\pi\)
\(588\) 2.80902 + 2.04087i 0.115842 + 0.0841641i
\(589\) 1.38197 + 1.00406i 0.0569429 + 0.0413715i
\(590\) −4.35410 + 13.4005i −0.179256 + 0.551692i
\(591\) −3.38197 10.4086i −0.139115 0.428153i
\(592\) 5.16312 3.75123i 0.212203 0.154174i
\(593\) −17.6738 −0.725774 −0.362887 0.931833i \(-0.618209\pi\)
−0.362887 + 0.931833i \(0.618209\pi\)
\(594\) −3.04508 + 1.31433i −0.124941 + 0.0539275i
\(595\) −19.7082 −0.807958
\(596\) 6.16312 4.47777i 0.252451 0.183417i
\(597\) −8.02786 24.7072i −0.328559 1.01120i
\(598\) 7.16312 22.0458i 0.292922 0.901520i
\(599\) −14.7082 10.6861i −0.600961 0.436624i 0.245259 0.969458i \(-0.421127\pi\)
−0.846220 + 0.532834i \(0.821127\pi\)
\(600\) 0.809017 + 0.587785i 0.0330280 + 0.0239962i
\(601\) −5.85410 + 18.0171i −0.238794 + 0.734932i 0.757802 + 0.652485i \(0.226273\pi\)
−0.996595 + 0.0824468i \(0.973727\pi\)
\(602\) 0.0901699 + 0.277515i 0.00367505 + 0.0113106i
\(603\) 4.11803 2.99193i 0.167699 0.121841i
\(604\) 20.9443 0.852210
\(605\) 10.8090 2.04087i 0.439449 0.0829732i
\(606\) −15.6180 −0.634439
\(607\) 3.61803 2.62866i 0.146851 0.106694i −0.511934 0.859025i \(-0.671071\pi\)
0.658785 + 0.752331i \(0.271071\pi\)
\(608\) 0.381966 + 1.17557i 0.0154908 + 0.0476757i
\(609\) −2.61803 + 8.05748i −0.106088 + 0.326506i
\(610\) 0 0
\(611\) 11.8369 + 8.60000i 0.478869 + 0.347919i
\(612\) −1.88197 + 5.79210i −0.0760740 + 0.234132i
\(613\) 1.85410 + 5.70634i 0.0748865 + 0.230477i 0.981492 0.191502i \(-0.0613357\pi\)
−0.906606 + 0.421979i \(0.861336\pi\)
\(614\) 27.0623 19.6619i 1.09215 0.793490i
\(615\) 1.23607 0.0498431
\(616\) −9.85410 + 4.25325i −0.397033 + 0.171368i
\(617\) 26.3607 1.06124 0.530621 0.847610i \(-0.321959\pi\)
0.530621 + 0.847610i \(0.321959\pi\)
\(618\) 5.47214 3.97574i 0.220122 0.159928i
\(619\) 2.94427 + 9.06154i 0.118340 + 0.364214i 0.992629 0.121192i \(-0.0386717\pi\)
−0.874289 + 0.485406i \(0.838672\pi\)
\(620\) 0.427051 1.31433i 0.0171508 0.0527847i
\(621\) 5.54508 + 4.02874i 0.222517 + 0.161668i
\(622\) −7.47214 5.42882i −0.299605 0.217676i
\(623\) −17.2361 + 53.0472i −0.690548 + 2.12529i
\(624\) −1.04508 3.21644i −0.0418369 0.128761i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 8.47214 0.338615
\(627\) 2.09017 3.52671i 0.0834733 0.140843i
\(628\) −9.27051 −0.369934
\(629\) −31.4443 + 22.8456i −1.25377 + 0.910914i
\(630\) 1.00000 + 3.07768i 0.0398410 + 0.122618i
\(631\) −1.75329 + 5.39607i −0.0697973 + 0.214814i −0.979871 0.199633i \(-0.936025\pi\)
0.910073 + 0.414447i \(0.136025\pi\)
\(632\) 3.30902 + 2.40414i 0.131626 + 0.0956316i
\(633\) −20.4164 14.8334i −0.811479 0.589574i
\(634\) −8.47214 + 26.0746i −0.336472 + 1.03555i
\(635\) −4.52786 13.9353i −0.179683 0.553007i
\(636\) 6.85410 4.97980i 0.271783 0.197462i
\(637\) 11.7426 0.465261
\(638\) −5.73607 6.51864i −0.227093 0.258075i
\(639\) 10.4721 0.414271
\(640\) 0.809017 0.587785i 0.0319792 0.0232343i
\(641\) 3.76393 + 11.5842i 0.148666 + 0.457548i 0.997464 0.0711694i \(-0.0226731\pi\)
−0.848798 + 0.528717i \(0.822673\pi\)
\(642\) −1.94427 + 5.98385i −0.0767343 + 0.236164i
\(643\) 3.88197 + 2.82041i 0.153090 + 0.111226i 0.661693 0.749775i \(-0.269838\pi\)
−0.508604 + 0.861001i \(0.669838\pi\)
\(644\) 17.9443 + 13.0373i 0.707103 + 0.513741i
\(645\) −0.0278640 + 0.0857567i −0.00109715 + 0.00337667i
\(646\) −2.32624 7.15942i −0.0915246 0.281684i
\(647\) 10.0172 7.27794i 0.393818 0.286125i −0.373200 0.927751i \(-0.621740\pi\)
0.767018 + 0.641625i \(0.221740\pi\)
\(648\) 1.00000 0.0392837
\(649\) −4.35410 46.5285i −0.170913 1.82640i
\(650\) 3.38197 0.132652
\(651\) 3.61803 2.62866i 0.141802 0.103025i
\(652\) 0.263932 + 0.812299i 0.0103364 + 0.0318121i
\(653\) 7.58359 23.3399i 0.296769 0.913361i −0.685853 0.727740i \(-0.740571\pi\)
0.982622 0.185620i \(-0.0594294\pi\)
\(654\) −2.00000 1.45309i −0.0782062 0.0568201i
\(655\) −2.73607 1.98787i −0.106907 0.0776725i
\(656\) 0.381966 1.17557i 0.0149133 0.0458983i
\(657\) 4.14590 + 12.7598i 0.161747 + 0.497806i
\(658\) −11.3262 + 8.22899i −0.441543 + 0.320800i
\(659\) −15.4164 −0.600538 −0.300269 0.953855i \(-0.597076\pi\)
−0.300269 + 0.953855i \(0.597076\pi\)
\(660\) −3.23607 0.726543i −0.125964 0.0282806i
\(661\) 8.36068 0.325193 0.162596 0.986693i \(-0.448013\pi\)
0.162596 + 0.986693i \(0.448013\pi\)
\(662\) −7.47214 + 5.42882i −0.290413 + 0.210997i
\(663\) 6.36475 + 19.5887i 0.247186 + 0.760761i
\(664\) 1.23607 3.80423i 0.0479687 0.147633i
\(665\) −3.23607 2.35114i −0.125489 0.0911733i
\(666\) 5.16312 + 3.75123i 0.200067 + 0.145357i
\(667\) −5.54508 + 17.0660i −0.214707 + 0.660799i
\(668\) −4.10081 12.6210i −0.158665 0.488321i
\(669\) 5.85410 4.25325i 0.226333 0.164440i
\(670\) 5.09017 0.196650
\(671\) 0 0
\(672\) 3.23607 0.124834
\(673\) 12.7082 9.23305i 0.489865 0.355908i −0.315267 0.949003i \(-0.602094\pi\)
0.805132 + 0.593095i \(0.202094\pi\)
\(674\) −4.70820 14.4904i −0.181353 0.558148i
\(675\) −0.309017 + 0.951057i −0.0118941 + 0.0366062i
\(676\) 1.26393 + 0.918300i 0.0486128 + 0.0353192i
\(677\) −22.0344 16.0090i −0.846852 0.615274i 0.0774240 0.996998i \(-0.475330\pi\)
−0.924276 + 0.381724i \(0.875330\pi\)
\(678\) 6.04508 18.6049i 0.232160 0.714515i
\(679\) −18.6525 57.4064i −0.715816 2.20306i
\(680\) −4.92705 + 3.57971i −0.188944 + 0.137276i
\(681\) −20.3607 −0.780223
\(682\) 0.427051 + 4.56352i 0.0163526 + 0.174746i
\(683\) 21.1246 0.808311 0.404155 0.914690i \(-0.367565\pi\)
0.404155 + 0.914690i \(0.367565\pi\)
\(684\) −1.00000 + 0.726543i −0.0382360 + 0.0277800i
\(685\) 3.95492 + 12.1720i 0.151110 + 0.465067i
\(686\) 3.52786 10.8576i 0.134694 0.414547i
\(687\) 0.618034 + 0.449028i 0.0235795 + 0.0171315i
\(688\) 0.0729490 + 0.0530006i 0.00278116 + 0.00202063i
\(689\) 8.85410 27.2501i 0.337314 1.03815i
\(690\) 2.11803 + 6.51864i 0.0806322 + 0.248160i
\(691\) 16.7082 12.1392i 0.635610 0.461798i −0.222729 0.974880i \(-0.571497\pi\)
0.858339 + 0.513083i \(0.171497\pi\)
\(692\) −9.52786 −0.362195
\(693\) −7.09017 8.05748i −0.269333 0.306078i
\(694\) 35.8885 1.36231
\(695\) 7.09017 5.15131i 0.268945 0.195400i
\(696\) 0.809017 + 2.48990i 0.0306657 + 0.0943794i
\(697\) −2.32624 + 7.15942i −0.0881125 + 0.271183i
\(698\) 9.23607 + 6.71040i 0.349590 + 0.253992i
\(699\) −3.59017 2.60841i −0.135793 0.0986592i
\(700\) −1.00000 + 3.07768i −0.0377964 + 0.116326i
\(701\) −1.09017 3.35520i −0.0411752 0.126724i 0.928356 0.371692i \(-0.121222\pi\)
−0.969531 + 0.244968i \(0.921222\pi\)
\(702\) 2.73607 1.98787i 0.103266 0.0750273i
\(703\) −7.88854 −0.297522
\(704\) −1.69098 + 2.85317i −0.0637313 + 0.107533i
\(705\) −4.32624 −0.162936
\(706\) −19.1074 + 13.8823i −0.719116 + 0.522468i
\(707\) −15.6180 48.0674i −0.587377 1.80776i
\(708\) −4.35410 + 13.4005i −0.163637 + 0.503623i
\(709\) 8.56231 + 6.22088i 0.321564 + 0.233630i 0.736843 0.676064i \(-0.236316\pi\)
−0.415278 + 0.909694i \(0.636316\pi\)
\(710\) 8.47214 + 6.15537i 0.317954 + 0.231007i
\(711\) −1.26393 + 3.88998i −0.0474012 + 0.145886i
\(712\) 5.32624 + 16.3925i 0.199609 + 0.614334i
\(713\) 7.66312 5.56758i 0.286986 0.208508i
\(714\) −19.7082 −0.737561
\(715\) −10.2984 + 4.44501i −0.385137 + 0.166234i
\(716\) 18.1459 0.678144
\(717\) −2.61803 + 1.90211i −0.0977723 + 0.0710357i
\(718\) −3.76393 11.5842i −0.140469 0.432318i
\(719\) 12.5623 38.6628i 0.468495 1.44188i −0.386038 0.922483i \(-0.626157\pi\)
0.854533 0.519397i \(-0.173843\pi\)
\(720\) 0.809017 + 0.587785i 0.0301503 + 0.0219055i
\(721\) 17.7082 + 12.8658i 0.659488 + 0.479146i
\(722\) −5.39919 + 16.6170i −0.200937 + 0.618420i
\(723\) 7.38197 + 22.7194i 0.274538 + 0.844942i
\(724\) −17.7082 + 12.8658i −0.658120 + 0.478152i
\(725\) −2.61803 −0.0972313
\(726\) 10.8090 2.04087i 0.401160 0.0757438i
\(727\) −50.1803 −1.86109 −0.930543 0.366183i \(-0.880664\pi\)
−0.930543 + 0.366183i \(0.880664\pi\)
\(728\) 8.85410 6.43288i 0.328155 0.238418i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) −4.14590 + 12.7598i −0.153447 + 0.472260i
\(731\) −0.444272 0.322782i −0.0164320 0.0119385i
\(732\) 0 0
\(733\) 15.8607 48.8142i 0.585828 1.80299i −0.0100937 0.999949i \(-0.503213\pi\)
0.595921 0.803043i \(-0.296787\pi\)
\(734\) −8.27051 25.4540i −0.305270 0.939525i
\(735\) −2.80902 + 2.04087i −0.103612 + 0.0752786i
\(736\) 6.85410 0.252646
\(737\) −15.5000 + 6.69015i −0.570950 + 0.246435i
\(738\) 1.23607 0.0455003
\(739\) −21.8541 + 15.8779i −0.803916 + 0.584079i −0.912060 0.410056i \(-0.865509\pi\)
0.108144 + 0.994135i \(0.465509\pi\)
\(740\) 1.97214 + 6.06961i 0.0724972 + 0.223123i
\(741\) −1.29180 + 3.97574i −0.0474553 + 0.146052i
\(742\) 22.1803 + 16.1150i 0.814266 + 0.591599i
\(743\) −8.73607 6.34712i −0.320495 0.232853i 0.415892 0.909414i \(-0.363470\pi\)
−0.736387 + 0.676561i \(0.763470\pi\)
\(744\) 0.427051 1.31433i 0.0156564 0.0481856i
\(745\) 2.35410 + 7.24518i 0.0862476 + 0.265443i
\(746\) 9.32624 6.77591i 0.341458 0.248084i
\(747\) 4.00000 0.146352
\(748\) 10.2984 17.3763i 0.376546 0.635340i
\(749\) −20.3607 −0.743963
\(750\) −0.809017 + 0.587785i −0.0295411 + 0.0214629i
\(751\) −8.97214 27.6134i −0.327398 1.00763i −0.970347 0.241718i \(-0.922289\pi\)
0.642949 0.765909i \(-0.277711\pi\)
\(752\) −1.33688 + 4.11450i −0.0487510 + 0.150040i
\(753\) 6.78115 + 4.92680i 0.247119 + 0.179542i
\(754\) 7.16312 + 5.20431i 0.260865 + 0.189530i
\(755\) −6.47214 + 19.9192i −0.235545 + 0.724933i
\(756\) 1.00000 + 3.07768i 0.0363696 + 0.111934i
\(757\) 43.5689 31.6546i 1.58354 1.15051i 0.671044 0.741417i \(-0.265846\pi\)
0.912494 0.409090i \(-0.134154\pi\)
\(758\) −12.3607 −0.448960
\(759\) −15.0172 17.0660i −0.545091 0.619457i
\(760\) −1.23607 −0.0448369
\(761\) 8.09017 5.87785i 0.293268 0.213072i −0.431416 0.902153i \(-0.641986\pi\)
0.724684 + 0.689081i \(0.241986\pi\)
\(762\) −4.52786 13.9353i −0.164027 0.504824i
\(763\) 2.47214 7.60845i 0.0894973 0.275444i
\(764\) −7.47214 5.42882i −0.270332 0.196408i
\(765\) −4.92705 3.57971i −0.178138 0.129425i
\(766\) −0.100813 + 0.310271i −0.00364252 + 0.0112105i
\(767\) 14.7254 + 45.3202i 0.531704 + 1.63642i
\(768\) 0.809017 0.587785i 0.0291929 0.0212099i
\(769\) −24.4508 −0.881720 −0.440860 0.897576i \(-0.645327\pi\)
−0.440860 + 0.897576i \(0.645327\pi\)
\(770\) −1.00000 10.6861i −0.0360375 0.385102i
\(771\) −30.3607 −1.09341
\(772\) 16.9443 12.3107i 0.609838 0.443073i
\(773\) 6.05573 + 18.6376i 0.217809 + 0.670348i 0.998942 + 0.0459835i \(0.0146422\pi\)
−0.781133 + 0.624365i \(0.785358\pi\)
\(774\) −0.0278640 + 0.0857567i −0.00100155 + 0.00308246i
\(775\) 1.11803 + 0.812299i