Properties

Label 330.2.m.b.301.1
Level $330$
Weight $2$
Character 330.301
Analytic conductor $2.635$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 330.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.63506326670\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 301.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 330.301
Dual form 330.2.m.b.91.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(0.809017 - 0.587785i) q^{6} +(-1.00000 - 3.07768i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(0.809017 - 0.587785i) q^{6} +(-1.00000 - 3.07768i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} -1.00000 q^{10} +(3.04508 + 1.31433i) q^{11} -1.00000 q^{12} +(-2.73607 - 1.98787i) q^{13} +(-1.00000 + 3.07768i) q^{14} +(0.309017 + 0.951057i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(4.92705 - 3.57971i) q^{17} +(0.309017 + 0.951057i) q^{18} +(0.381966 - 1.17557i) q^{19} +(0.809017 + 0.587785i) q^{20} +3.23607 q^{21} +(-1.69098 - 2.85317i) q^{22} +6.85410 q^{23} +(0.809017 + 0.587785i) q^{24} +(0.309017 - 0.951057i) q^{25} +(1.04508 + 3.21644i) q^{26} +(0.809017 - 0.587785i) q^{27} +(2.61803 - 1.90211i) q^{28} +(-0.809017 - 2.48990i) q^{29} +(0.309017 - 0.951057i) q^{30} +(1.11803 + 0.812299i) q^{31} +1.00000 q^{32} +(-2.19098 + 2.48990i) q^{33} -6.09017 q^{34} +(-2.61803 - 1.90211i) q^{35} +(0.309017 - 0.951057i) q^{36} +(-1.97214 - 6.06961i) q^{37} +(-1.00000 + 0.726543i) q^{38} +(2.73607 - 1.98787i) q^{39} +(-0.309017 - 0.951057i) q^{40} +(0.381966 - 1.17557i) q^{41} +(-2.61803 - 1.90211i) q^{42} -0.0901699 q^{43} +(-0.309017 + 3.30220i) q^{44} -1.00000 q^{45} +(-5.54508 - 4.02874i) q^{46} +(-1.33688 + 4.11450i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(-2.80902 + 2.04087i) q^{49} +(-0.809017 + 0.587785i) q^{50} +(1.88197 + 5.79210i) q^{51} +(1.04508 - 3.21644i) q^{52} +(-6.85410 - 4.97980i) q^{53} -1.00000 q^{54} +(3.23607 - 0.726543i) q^{55} -3.23607 q^{56} +(1.00000 + 0.726543i) q^{57} +(-0.809017 + 2.48990i) q^{58} +(4.35410 + 13.4005i) q^{59} +(-0.809017 + 0.587785i) q^{60} +(-0.427051 - 1.31433i) q^{62} +(-1.00000 + 3.07768i) q^{63} +(-0.809017 - 0.587785i) q^{64} -3.38197 q^{65} +(3.23607 - 0.726543i) q^{66} -5.09017 q^{67} +(4.92705 + 3.57971i) q^{68} +(-2.11803 + 6.51864i) q^{69} +(1.00000 + 3.07768i) q^{70} +(-8.47214 + 6.15537i) q^{71} +(-0.809017 + 0.587785i) q^{72} +(4.14590 + 12.7598i) q^{73} +(-1.97214 + 6.06961i) q^{74} +(0.809017 + 0.587785i) q^{75} +1.23607 q^{76} +(1.00000 - 10.6861i) q^{77} -3.38197 q^{78} +(3.30902 + 2.40414i) q^{79} +(-0.309017 + 0.951057i) q^{80} +(0.309017 + 0.951057i) q^{81} +(-1.00000 + 0.726543i) q^{82} +(-3.23607 + 2.35114i) q^{83} +(1.00000 + 3.07768i) q^{84} +(1.88197 - 5.79210i) q^{85} +(0.0729490 + 0.0530006i) q^{86} +2.61803 q^{87} +(2.19098 - 2.48990i) q^{88} +17.2361 q^{89} +(0.809017 + 0.587785i) q^{90} +(-3.38197 + 10.4086i) q^{91} +(2.11803 + 6.51864i) q^{92} +(-1.11803 + 0.812299i) q^{93} +(3.50000 - 2.54290i) q^{94} +(-0.381966 - 1.17557i) q^{95} +(-0.309017 + 0.951057i) q^{96} +(-15.0902 - 10.9637i) q^{97} +3.47214 q^{98} +(-1.69098 - 2.85317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 4q^{7} - q^{8} - q^{9} + O(q^{10}) \) \( 4q - q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 4q^{7} - q^{8} - q^{9} - 4q^{10} + q^{11} - 4q^{12} - 2q^{13} - 4q^{14} - q^{15} - q^{16} + 13q^{17} - q^{18} + 6q^{19} + q^{20} + 4q^{21} - 9q^{22} + 14q^{23} + q^{24} - q^{25} - 7q^{26} + q^{27} + 6q^{28} - q^{29} - q^{30} + 4q^{32} - 11q^{33} - 2q^{34} - 6q^{35} - q^{36} + 10q^{37} - 4q^{38} + 2q^{39} + q^{40} + 6q^{41} - 6q^{42} + 22q^{43} + q^{44} - 4q^{45} - 11q^{46} - 21q^{47} + q^{48} - 9q^{49} - q^{50} + 12q^{51} - 7q^{52} - 14q^{53} - 4q^{54} + 4q^{55} - 4q^{56} + 4q^{57} - q^{58} + 4q^{59} - q^{60} + 5q^{62} - 4q^{63} - q^{64} - 18q^{65} + 4q^{66} + 2q^{67} + 13q^{68} - 4q^{69} + 4q^{70} - 16q^{71} - q^{72} + 30q^{73} + 10q^{74} + q^{75} - 4q^{76} + 4q^{77} - 18q^{78} + 11q^{79} + q^{80} - q^{81} - 4q^{82} - 4q^{83} + 4q^{84} + 12q^{85} + 7q^{86} + 6q^{87} + 11q^{88} + 60q^{89} + q^{90} - 18q^{91} + 4q^{92} + 14q^{94} - 6q^{95} + q^{96} - 38q^{97} - 4q^{98} - 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/330\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(211\) \(221\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) −1.00000 3.07768i −0.377964 1.16326i −0.941457 0.337134i \(-0.890543\pi\)
0.563492 0.826121i \(-0.309457\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) −1.00000 −0.316228
\(11\) 3.04508 + 1.31433i 0.918128 + 0.396285i
\(12\) −1.00000 −0.288675
\(13\) −2.73607 1.98787i −0.758849 0.551336i 0.139708 0.990193i \(-0.455384\pi\)
−0.898557 + 0.438857i \(0.855384\pi\)
\(14\) −1.00000 + 3.07768i −0.267261 + 0.822546i
\(15\) 0.309017 + 0.951057i 0.0797878 + 0.245562i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 4.92705 3.57971i 1.19499 0.868208i 0.201203 0.979550i \(-0.435515\pi\)
0.993782 + 0.111342i \(0.0355148\pi\)
\(18\) 0.309017 + 0.951057i 0.0728360 + 0.224166i
\(19\) 0.381966 1.17557i 0.0876290 0.269694i −0.897634 0.440742i \(-0.854715\pi\)
0.985263 + 0.171048i \(0.0547153\pi\)
\(20\) 0.809017 + 0.587785i 0.180902 + 0.131433i
\(21\) 3.23607 0.706168
\(22\) −1.69098 2.85317i −0.360519 0.608298i
\(23\) 6.85410 1.42918 0.714590 0.699544i \(-0.246614\pi\)
0.714590 + 0.699544i \(0.246614\pi\)
\(24\) 0.809017 + 0.587785i 0.165140 + 0.119981i
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 1.04508 + 3.21644i 0.204958 + 0.630796i
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 2.61803 1.90211i 0.494762 0.359466i
\(29\) −0.809017 2.48990i −0.150231 0.462363i 0.847416 0.530930i \(-0.178157\pi\)
−0.997646 + 0.0685673i \(0.978157\pi\)
\(30\) 0.309017 0.951057i 0.0564185 0.173638i
\(31\) 1.11803 + 0.812299i 0.200805 + 0.145893i 0.683644 0.729816i \(-0.260394\pi\)
−0.482839 + 0.875709i \(0.660394\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.19098 + 2.48990i −0.381401 + 0.433436i
\(34\) −6.09017 −1.04446
\(35\) −2.61803 1.90211i −0.442529 0.321516i
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) −1.97214 6.06961i −0.324217 0.997838i −0.971793 0.235837i \(-0.924217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(38\) −1.00000 + 0.726543i −0.162221 + 0.117861i
\(39\) 2.73607 1.98787i 0.438122 0.318314i
\(40\) −0.309017 0.951057i −0.0488599 0.150375i
\(41\) 0.381966 1.17557i 0.0596531 0.183593i −0.916789 0.399371i \(-0.869229\pi\)
0.976443 + 0.215778i \(0.0692286\pi\)
\(42\) −2.61803 1.90211i −0.403971 0.293502i
\(43\) −0.0901699 −0.0137508 −0.00687539 0.999976i \(-0.502189\pi\)
−0.00687539 + 0.999976i \(0.502189\pi\)
\(44\) −0.309017 + 3.30220i −0.0465861 + 0.497825i
\(45\) −1.00000 −0.149071
\(46\) −5.54508 4.02874i −0.817578 0.594005i
\(47\) −1.33688 + 4.11450i −0.195004 + 0.600161i 0.804972 + 0.593312i \(0.202180\pi\)
−0.999977 + 0.00684879i \(0.997820\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −2.80902 + 2.04087i −0.401288 + 0.291553i
\(50\) −0.809017 + 0.587785i −0.114412 + 0.0831254i
\(51\) 1.88197 + 5.79210i 0.263528 + 0.811056i
\(52\) 1.04508 3.21644i 0.144927 0.446040i
\(53\) −6.85410 4.97980i −0.941483 0.684028i 0.00729395 0.999973i \(-0.497678\pi\)
−0.948777 + 0.315946i \(0.897678\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.23607 0.726543i 0.436351 0.0979670i
\(56\) −3.23607 −0.432438
\(57\) 1.00000 + 0.726543i 0.132453 + 0.0962329i
\(58\) −0.809017 + 2.48990i −0.106229 + 0.326940i
\(59\) 4.35410 + 13.4005i 0.566856 + 1.74460i 0.662372 + 0.749175i \(0.269550\pi\)
−0.0955164 + 0.995428i \(0.530450\pi\)
\(60\) −0.809017 + 0.587785i −0.104444 + 0.0758827i
\(61\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(62\) −0.427051 1.31433i −0.0542355 0.166920i
\(63\) −1.00000 + 3.07768i −0.125988 + 0.387752i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) −3.38197 −0.419481
\(66\) 3.23607 0.726543i 0.398332 0.0894312i
\(67\) −5.09017 −0.621863 −0.310932 0.950432i \(-0.600641\pi\)
−0.310932 + 0.950432i \(0.600641\pi\)
\(68\) 4.92705 + 3.57971i 0.597493 + 0.434104i
\(69\) −2.11803 + 6.51864i −0.254981 + 0.784752i
\(70\) 1.00000 + 3.07768i 0.119523 + 0.367854i
\(71\) −8.47214 + 6.15537i −1.00546 + 0.730508i −0.963251 0.268601i \(-0.913439\pi\)
−0.0422061 + 0.999109i \(0.513439\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) 4.14590 + 12.7598i 0.485241 + 1.49342i 0.831632 + 0.555327i \(0.187407\pi\)
−0.346391 + 0.938090i \(0.612593\pi\)
\(74\) −1.97214 + 6.06961i −0.229256 + 0.705578i
\(75\) 0.809017 + 0.587785i 0.0934172 + 0.0678716i
\(76\) 1.23607 0.141787
\(77\) 1.00000 10.6861i 0.113961 1.21780i
\(78\) −3.38197 −0.382932
\(79\) 3.30902 + 2.40414i 0.372293 + 0.270487i 0.758161 0.652067i \(-0.226098\pi\)
−0.385868 + 0.922554i \(0.626098\pi\)
\(80\) −0.309017 + 0.951057i −0.0345492 + 0.106331i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −1.00000 + 0.726543i −0.110432 + 0.0802332i
\(83\) −3.23607 + 2.35114i −0.355205 + 0.258071i −0.751049 0.660246i \(-0.770452\pi\)
0.395845 + 0.918318i \(0.370452\pi\)
\(84\) 1.00000 + 3.07768i 0.109109 + 0.335803i
\(85\) 1.88197 5.79210i 0.204128 0.628241i
\(86\) 0.0729490 + 0.0530006i 0.00786629 + 0.00571520i
\(87\) 2.61803 0.280683
\(88\) 2.19098 2.48990i 0.233560 0.265424i
\(89\) 17.2361 1.82702 0.913510 0.406817i \(-0.133361\pi\)
0.913510 + 0.406817i \(0.133361\pi\)
\(90\) 0.809017 + 0.587785i 0.0852779 + 0.0619580i
\(91\) −3.38197 + 10.4086i −0.354526 + 1.09112i
\(92\) 2.11803 + 6.51864i 0.220820 + 0.679615i
\(93\) −1.11803 + 0.812299i −0.115935 + 0.0842315i
\(94\) 3.50000 2.54290i 0.360997 0.262280i
\(95\) −0.381966 1.17557i −0.0391889 0.120611i
\(96\) −0.309017 + 0.951057i −0.0315389 + 0.0970668i
\(97\) −15.0902 10.9637i −1.53217 1.11319i −0.955015 0.296559i \(-0.904161\pi\)
−0.577160 0.816631i \(-0.695839\pi\)
\(98\) 3.47214 0.350739
\(99\) −1.69098 2.85317i −0.169950 0.286754i
\(100\) 1.00000 0.100000
\(101\) −12.6353 9.18005i −1.25725 0.913449i −0.258635 0.965975i \(-0.583273\pi\)
−0.998620 + 0.0525259i \(0.983273\pi\)
\(102\) 1.88197 5.79210i 0.186342 0.573503i
\(103\) 2.09017 + 6.43288i 0.205951 + 0.633851i 0.999673 + 0.0255706i \(0.00814025\pi\)
−0.793722 + 0.608280i \(0.791860\pi\)
\(104\) −2.73607 + 1.98787i −0.268294 + 0.194927i
\(105\) 2.61803 1.90211i 0.255494 0.185627i
\(106\) 2.61803 + 8.05748i 0.254286 + 0.782612i
\(107\) 1.94427 5.98385i 0.187960 0.578481i −0.812027 0.583620i \(-0.801636\pi\)
0.999987 + 0.00513899i \(0.00163580\pi\)
\(108\) 0.809017 + 0.587785i 0.0778477 + 0.0565597i
\(109\) −2.47214 −0.236788 −0.118394 0.992967i \(-0.537775\pi\)
−0.118394 + 0.992967i \(0.537775\pi\)
\(110\) −3.04508 1.31433i −0.290337 0.125316i
\(111\) 6.38197 0.605749
\(112\) 2.61803 + 1.90211i 0.247381 + 0.179733i
\(113\) −6.04508 + 18.6049i −0.568674 + 1.75020i 0.0881015 + 0.996112i \(0.471920\pi\)
−0.656775 + 0.754086i \(0.728080\pi\)
\(114\) −0.381966 1.17557i −0.0357744 0.110102i
\(115\) 5.54508 4.02874i 0.517082 0.375682i
\(116\) 2.11803 1.53884i 0.196655 0.142878i
\(117\) 1.04508 + 3.21644i 0.0966181 + 0.297360i
\(118\) 4.35410 13.4005i 0.400828 1.23362i
\(119\) −15.9443 11.5842i −1.46161 1.06192i
\(120\) 1.00000 0.0912871
\(121\) 7.54508 + 8.00448i 0.685917 + 0.727680i
\(122\) 0 0
\(123\) 1.00000 + 0.726543i 0.0901670 + 0.0655101i
\(124\) −0.427051 + 1.31433i −0.0383503 + 0.118030i
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 2.61803 1.90211i 0.233233 0.169454i
\(127\) −11.8541 + 8.61251i −1.05188 + 0.764237i −0.972569 0.232613i \(-0.925272\pi\)
−0.0793121 + 0.996850i \(0.525272\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 0.0278640 0.0857567i 0.00245329 0.00755046i
\(130\) 2.73607 + 1.98787i 0.239969 + 0.174348i
\(131\) −3.38197 −0.295484 −0.147742 0.989026i \(-0.547200\pi\)
−0.147742 + 0.989026i \(0.547200\pi\)
\(132\) −3.04508 1.31433i −0.265041 0.114398i
\(133\) −4.00000 −0.346844
\(134\) 4.11803 + 2.99193i 0.355744 + 0.258463i
\(135\) 0.309017 0.951057i 0.0265959 0.0818539i
\(136\) −1.88197 5.79210i −0.161377 0.496668i
\(137\) 10.3541 7.52270i 0.884611 0.642707i −0.0498566 0.998756i \(-0.515876\pi\)
0.934467 + 0.356049i \(0.115876\pi\)
\(138\) 5.54508 4.02874i 0.472029 0.342949i
\(139\) 2.70820 + 8.33499i 0.229707 + 0.706965i 0.997780 + 0.0666024i \(0.0212159\pi\)
−0.768073 + 0.640363i \(0.778784\pi\)
\(140\) 1.00000 3.07768i 0.0845154 0.260112i
\(141\) −3.50000 2.54290i −0.294753 0.214151i
\(142\) 10.4721 0.878802
\(143\) −5.71885 9.64932i −0.478234 0.806917i
\(144\) 1.00000 0.0833333
\(145\) −2.11803 1.53884i −0.175893 0.127794i
\(146\) 4.14590 12.7598i 0.343117 1.05601i
\(147\) −1.07295 3.30220i −0.0884953 0.272361i
\(148\) 5.16312 3.75123i 0.424406 0.308349i
\(149\) 6.16312 4.47777i 0.504902 0.366833i −0.305984 0.952037i \(-0.598985\pi\)
0.810886 + 0.585204i \(0.198985\pi\)
\(150\) −0.309017 0.951057i −0.0252311 0.0776534i
\(151\) 6.47214 19.9192i 0.526695 1.62100i −0.234245 0.972178i \(-0.575262\pi\)
0.760940 0.648823i \(-0.224738\pi\)
\(152\) −1.00000 0.726543i −0.0811107 0.0589304i
\(153\) −6.09017 −0.492361
\(154\) −7.09017 + 8.05748i −0.571342 + 0.649290i
\(155\) 1.38197 0.111002
\(156\) 2.73607 + 1.98787i 0.219061 + 0.159157i
\(157\) −2.86475 + 8.81678i −0.228632 + 0.703656i 0.769271 + 0.638923i \(0.220620\pi\)
−0.997903 + 0.0647330i \(0.979380\pi\)
\(158\) −1.26393 3.88998i −0.100553 0.309470i
\(159\) 6.85410 4.97980i 0.543566 0.394924i
\(160\) 0.809017 0.587785i 0.0639584 0.0464685i
\(161\) −6.85410 21.0948i −0.540179 1.66250i
\(162\) 0.309017 0.951057i 0.0242787 0.0747221i
\(163\) −0.690983 0.502029i −0.0541220 0.0393219i 0.560395 0.828225i \(-0.310649\pi\)
−0.614517 + 0.788903i \(0.710649\pi\)
\(164\) 1.23607 0.0965207
\(165\) −0.309017 + 3.30220i −0.0240569 + 0.257076i
\(166\) 4.00000 0.310460
\(167\) 10.7361 + 7.80021i 0.830782 + 0.603598i 0.919780 0.392433i \(-0.128367\pi\)
−0.0889985 + 0.996032i \(0.528367\pi\)
\(168\) 1.00000 3.07768i 0.0771517 0.237448i
\(169\) −0.482779 1.48584i −0.0371369 0.114295i
\(170\) −4.92705 + 3.57971i −0.377888 + 0.274551i
\(171\) −1.00000 + 0.726543i −0.0764719 + 0.0555601i
\(172\) −0.0278640 0.0857567i −0.00212461 0.00653889i
\(173\) −2.94427 + 9.06154i −0.223849 + 0.688936i 0.774558 + 0.632503i \(0.217973\pi\)
−0.998406 + 0.0564325i \(0.982027\pi\)
\(174\) −2.11803 1.53884i −0.160568 0.116659i
\(175\) −3.23607 −0.244624
\(176\) −3.23607 + 0.726543i −0.243928 + 0.0547652i
\(177\) −14.0902 −1.05908
\(178\) −13.9443 10.1311i −1.04517 0.759359i
\(179\) 5.60739 17.2578i 0.419116 1.28991i −0.489401 0.872059i \(-0.662785\pi\)
0.908517 0.417848i \(-0.137215\pi\)
\(180\) −0.309017 0.951057i −0.0230328 0.0708876i
\(181\) −17.7082 + 12.8658i −1.31624 + 0.956305i −0.316270 + 0.948669i \(0.602430\pi\)
−0.999971 + 0.00763529i \(0.997570\pi\)
\(182\) 8.85410 6.43288i 0.656310 0.476837i
\(183\) 0 0
\(184\) 2.11803 6.51864i 0.156144 0.480560i
\(185\) −5.16312 3.75123i −0.379600 0.275796i
\(186\) 1.38197 0.101331
\(187\) 19.7082 4.42477i 1.44121 0.323571i
\(188\) −4.32624 −0.315523
\(189\) −2.61803 1.90211i −0.190434 0.138358i
\(190\) −0.381966 + 1.17557i −0.0277107 + 0.0852848i
\(191\) 2.85410 + 8.78402i 0.206516 + 0.635590i 0.999648 + 0.0265400i \(0.00844895\pi\)
−0.793132 + 0.609050i \(0.791551\pi\)
\(192\) 0.809017 0.587785i 0.0583858 0.0424197i
\(193\) 16.9443 12.3107i 1.21968 0.886146i 0.223602 0.974680i \(-0.428218\pi\)
0.996073 + 0.0885344i \(0.0282183\pi\)
\(194\) 5.76393 + 17.7396i 0.413826 + 1.27363i
\(195\) 1.04508 3.21644i 0.0748401 0.230334i
\(196\) −2.80902 2.04087i −0.200644 0.145776i
\(197\) 10.9443 0.779747 0.389874 0.920868i \(-0.372519\pi\)
0.389874 + 0.920868i \(0.372519\pi\)
\(198\) −0.309017 + 3.30220i −0.0219609 + 0.234677i
\(199\) 25.9787 1.84158 0.920791 0.390056i \(-0.127544\pi\)
0.920791 + 0.390056i \(0.127544\pi\)
\(200\) −0.809017 0.587785i −0.0572061 0.0415627i
\(201\) 1.57295 4.84104i 0.110947 0.341461i
\(202\) 4.82624 + 14.8536i 0.339573 + 1.04510i
\(203\) −6.85410 + 4.97980i −0.481064 + 0.349513i
\(204\) −4.92705 + 3.57971i −0.344963 + 0.250630i
\(205\) −0.381966 1.17557i −0.0266777 0.0821054i
\(206\) 2.09017 6.43288i 0.145629 0.448200i
\(207\) −5.54508 4.02874i −0.385410 0.280017i
\(208\) 3.38197 0.234497
\(209\) 2.70820 3.07768i 0.187330 0.212888i
\(210\) −3.23607 −0.223310
\(211\) 20.4164 + 14.8334i 1.40552 + 1.02117i 0.993954 + 0.109794i \(0.0350191\pi\)
0.411569 + 0.911379i \(0.364981\pi\)
\(212\) 2.61803 8.05748i 0.179807 0.553390i
\(213\) −3.23607 9.95959i −0.221732 0.682420i
\(214\) −5.09017 + 3.69822i −0.347957 + 0.252805i
\(215\) −0.0729490 + 0.0530006i −0.00497508 + 0.00361461i
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) 1.38197 4.25325i 0.0938140 0.288730i
\(218\) 2.00000 + 1.45309i 0.135457 + 0.0984153i
\(219\) −13.4164 −0.906597
\(220\) 1.69098 + 2.85317i 0.114006 + 0.192361i
\(221\) −20.5967 −1.38549
\(222\) −5.16312 3.75123i −0.346526 0.251766i
\(223\) 2.23607 6.88191i 0.149738 0.460847i −0.847852 0.530234i \(-0.822104\pi\)
0.997590 + 0.0693868i \(0.0221043\pi\)
\(224\) −1.00000 3.07768i −0.0668153 0.205636i
\(225\) −0.809017 + 0.587785i −0.0539345 + 0.0391857i
\(226\) 15.8262 11.4984i 1.05275 0.764865i
\(227\) 6.29180 + 19.3642i 0.417601 + 1.28524i 0.909904 + 0.414820i \(0.136155\pi\)
−0.492302 + 0.870424i \(0.663845\pi\)
\(228\) −0.381966 + 1.17557i −0.0252963 + 0.0778541i
\(229\) −0.618034 0.449028i −0.0408408 0.0296726i 0.567178 0.823596i \(-0.308035\pi\)
−0.608018 + 0.793923i \(0.708035\pi\)
\(230\) −6.85410 −0.451946
\(231\) 9.85410 + 4.25325i 0.648352 + 0.279844i
\(232\) −2.61803 −0.171882
\(233\) 3.59017 + 2.60841i 0.235200 + 0.170883i 0.699142 0.714983i \(-0.253565\pi\)
−0.463942 + 0.885865i \(0.653565\pi\)
\(234\) 1.04508 3.21644i 0.0683193 0.210265i
\(235\) 1.33688 + 4.11450i 0.0872085 + 0.268400i
\(236\) −11.3992 + 8.28199i −0.742024 + 0.539112i
\(237\) −3.30902 + 2.40414i −0.214944 + 0.156166i
\(238\) 6.09017 + 18.7436i 0.394767 + 1.21497i
\(239\) −1.00000 + 3.07768i −0.0646846 + 0.199079i −0.978175 0.207780i \(-0.933376\pi\)
0.913491 + 0.406859i \(0.133376\pi\)
\(240\) −0.809017 0.587785i −0.0522218 0.0379414i
\(241\) −23.8885 −1.53880 −0.769398 0.638769i \(-0.779444\pi\)
−0.769398 + 0.638769i \(0.779444\pi\)
\(242\) −1.39919 10.9106i −0.0899431 0.701363i
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −1.07295 + 3.30220i −0.0685482 + 0.210970i
\(246\) −0.381966 1.17557i −0.0243533 0.0749516i
\(247\) −3.38197 + 2.45714i −0.215189 + 0.156344i
\(248\) 1.11803 0.812299i 0.0709952 0.0515811i
\(249\) −1.23607 3.80423i −0.0783326 0.241083i
\(250\) −0.309017 + 0.951057i −0.0195440 + 0.0601501i
\(251\) −6.78115 4.92680i −0.428023 0.310977i 0.352835 0.935685i \(-0.385218\pi\)
−0.780858 + 0.624709i \(0.785218\pi\)
\(252\) −3.23607 −0.203853
\(253\) 20.8713 + 9.00854i 1.31217 + 0.566362i
\(254\) 14.6525 0.919378
\(255\) 4.92705 + 3.57971i 0.308544 + 0.224170i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 9.38197 + 28.8747i 0.585231 + 1.80116i 0.598341 + 0.801242i \(0.295827\pi\)
−0.0131100 + 0.999914i \(0.504173\pi\)
\(258\) −0.0729490 + 0.0530006i −0.00454161 + 0.00329967i
\(259\) −16.7082 + 12.1392i −1.03820 + 0.754294i
\(260\) −1.04508 3.21644i −0.0648134 0.199475i
\(261\) −0.809017 + 2.48990i −0.0500769 + 0.154121i
\(262\) 2.73607 + 1.98787i 0.169035 + 0.122811i
\(263\) 6.85410 0.422642 0.211321 0.977417i \(-0.432223\pi\)
0.211321 + 0.977417i \(0.432223\pi\)
\(264\) 1.69098 + 2.85317i 0.104073 + 0.175600i
\(265\) −8.47214 −0.520439
\(266\) 3.23607 + 2.35114i 0.198416 + 0.144158i
\(267\) −5.32624 + 16.3925i −0.325960 + 1.00320i
\(268\) −1.57295 4.84104i −0.0960832 0.295714i
\(269\) −2.59017 + 1.88187i −0.157925 + 0.114740i −0.663942 0.747784i \(-0.731118\pi\)
0.506016 + 0.862524i \(0.331118\pi\)
\(270\) −0.809017 + 0.587785i −0.0492352 + 0.0357715i
\(271\) −1.97214 6.06961i −0.119799 0.368703i 0.873119 0.487507i \(-0.162094\pi\)
−0.992918 + 0.118805i \(0.962094\pi\)
\(272\) −1.88197 + 5.79210i −0.114111 + 0.351197i
\(273\) −8.85410 6.43288i −0.535875 0.389336i
\(274\) −12.7984 −0.773178
\(275\) 2.19098 2.48990i 0.132121 0.150147i
\(276\) −6.85410 −0.412568
\(277\) 19.0172 + 13.8168i 1.14263 + 0.830172i 0.987484 0.157719i \(-0.0504139\pi\)
0.155150 + 0.987891i \(0.450414\pi\)
\(278\) 2.70820 8.33499i 0.162427 0.499900i
\(279\) −0.427051 1.31433i −0.0255669 0.0786867i
\(280\) −2.61803 + 1.90211i −0.156457 + 0.113673i
\(281\) 6.09017 4.42477i 0.363309 0.263959i −0.391122 0.920339i \(-0.627913\pi\)
0.754431 + 0.656379i \(0.227913\pi\)
\(282\) 1.33688 + 4.11450i 0.0796101 + 0.245015i
\(283\) −6.89919 + 21.2335i −0.410114 + 1.26220i 0.506435 + 0.862278i \(0.330963\pi\)
−0.916549 + 0.399923i \(0.869037\pi\)
\(284\) −8.47214 6.15537i −0.502729 0.365254i
\(285\) 1.23607 0.0732183
\(286\) −1.04508 + 11.1679i −0.0617972 + 0.660373i
\(287\) −4.00000 −0.236113
\(288\) −0.809017 0.587785i −0.0476718 0.0346356i
\(289\) 6.20820 19.1069i 0.365188 1.12393i
\(290\) 0.809017 + 2.48990i 0.0475071 + 0.146212i
\(291\) 15.0902 10.9637i 0.884601 0.642701i
\(292\) −10.8541 + 7.88597i −0.635188 + 0.461491i
\(293\) −6.18034 19.0211i −0.361059 1.11123i −0.952412 0.304813i \(-0.901406\pi\)
0.591353 0.806413i \(-0.298594\pi\)
\(294\) −1.07295 + 3.30220i −0.0625757 + 0.192588i
\(295\) 11.3992 + 8.28199i 0.663686 + 0.482196i
\(296\) −6.38197 −0.370944
\(297\) 3.23607 0.726543i 0.187776 0.0421583i
\(298\) −7.61803 −0.441301
\(299\) −18.7533 13.6251i −1.08453 0.787958i
\(300\) −0.309017 + 0.951057i −0.0178411 + 0.0549093i
\(301\) 0.0901699 + 0.277515i 0.00519731 + 0.0159957i
\(302\) −16.9443 + 12.3107i −0.975033 + 0.708403i
\(303\) 12.6353 9.18005i 0.725876 0.527380i
\(304\) 0.381966 + 1.17557i 0.0219073 + 0.0674236i
\(305\) 0 0
\(306\) 4.92705 + 3.57971i 0.281661 + 0.204639i
\(307\) −33.4508 −1.90914 −0.954570 0.297985i \(-0.903685\pi\)
−0.954570 + 0.297985i \(0.903685\pi\)
\(308\) 10.4721 2.35114i 0.596705 0.133969i
\(309\) −6.76393 −0.384787
\(310\) −1.11803 0.812299i −0.0635001 0.0461355i
\(311\) 2.85410 8.78402i 0.161841 0.498096i −0.836948 0.547282i \(-0.815663\pi\)
0.998790 + 0.0491856i \(0.0156626\pi\)
\(312\) −1.04508 3.21644i −0.0591663 0.182095i
\(313\) −6.85410 + 4.97980i −0.387417 + 0.281475i −0.764396 0.644747i \(-0.776963\pi\)
0.376979 + 0.926222i \(0.376963\pi\)
\(314\) 7.50000 5.44907i 0.423249 0.307509i
\(315\) 1.00000 + 3.07768i 0.0563436 + 0.173408i
\(316\) −1.26393 + 3.88998i −0.0711017 + 0.218829i
\(317\) 22.1803 + 16.1150i 1.24577 + 0.905106i 0.997969 0.0637041i \(-0.0202914\pi\)
0.247803 + 0.968810i \(0.420291\pi\)
\(318\) −8.47214 −0.475094
\(319\) 0.809017 8.64527i 0.0452963 0.484042i
\(320\) −1.00000 −0.0559017
\(321\) 5.09017 + 3.69822i 0.284106 + 0.206415i
\(322\) −6.85410 + 21.0948i −0.381964 + 1.17556i
\(323\) −2.32624 7.15942i −0.129435 0.398361i
\(324\) −0.809017 + 0.587785i −0.0449454 + 0.0326547i
\(325\) −2.73607 + 1.98787i −0.151770 + 0.110267i
\(326\) 0.263932 + 0.812299i 0.0146178 + 0.0449891i
\(327\) 0.763932 2.35114i 0.0422455 0.130018i
\(328\) −1.00000 0.726543i −0.0552158 0.0401166i
\(329\) 14.0000 0.771845
\(330\) 2.19098 2.48990i 0.120610 0.137064i
\(331\) 9.23607 0.507660 0.253830 0.967249i \(-0.418310\pi\)
0.253830 + 0.967249i \(0.418310\pi\)
\(332\) −3.23607 2.35114i −0.177602 0.129036i
\(333\) −1.97214 + 6.06961i −0.108072 + 0.332613i
\(334\) −4.10081 12.6210i −0.224387 0.690591i
\(335\) −4.11803 + 2.99193i −0.224992 + 0.163466i
\(336\) −2.61803 + 1.90211i −0.142825 + 0.103769i
\(337\) −4.70820 14.4904i −0.256472 0.789340i −0.993536 0.113517i \(-0.963788\pi\)
0.737064 0.675823i \(-0.236212\pi\)
\(338\) −0.482779 + 1.48584i −0.0262597 + 0.0808191i
\(339\) −15.8262 11.4984i −0.859563 0.624509i
\(340\) 6.09017 0.330286
\(341\) 2.33688 + 3.94298i 0.126549 + 0.213525i
\(342\) 1.23607 0.0668389
\(343\) −9.23607 6.71040i −0.498701 0.362327i
\(344\) −0.0278640 + 0.0857567i −0.00150233 + 0.00462369i
\(345\) 2.11803 + 6.51864i 0.114031 + 0.350952i
\(346\) 7.70820 5.60034i 0.414396 0.301076i
\(347\) −29.0344 + 21.0948i −1.55865 + 1.13243i −0.621546 + 0.783378i \(0.713495\pi\)
−0.937105 + 0.349048i \(0.886505\pi\)
\(348\) 0.809017 + 2.48990i 0.0433679 + 0.133473i
\(349\) −3.52786 + 10.8576i −0.188842 + 0.581197i −0.999993 0.00363995i \(-0.998841\pi\)
0.811151 + 0.584837i \(0.198841\pi\)
\(350\) 2.61803 + 1.90211i 0.139940 + 0.101672i
\(351\) −3.38197 −0.180516
\(352\) 3.04508 + 1.31433i 0.162304 + 0.0700539i
\(353\) 23.6180 1.25706 0.628531 0.777785i \(-0.283657\pi\)
0.628531 + 0.777785i \(0.283657\pi\)
\(354\) 11.3992 + 8.28199i 0.605860 + 0.440183i
\(355\) −3.23607 + 9.95959i −0.171753 + 0.528600i
\(356\) 5.32624 + 16.3925i 0.282290 + 0.868799i
\(357\) 15.9443 11.5842i 0.843860 0.613100i
\(358\) −14.6803 + 10.6659i −0.775880 + 0.563710i
\(359\) −3.76393 11.5842i −0.198653 0.611390i −0.999915 0.0130763i \(-0.995838\pi\)
0.801262 0.598314i \(-0.204162\pi\)
\(360\) −0.309017 + 0.951057i −0.0162866 + 0.0501251i
\(361\) 14.1353 + 10.2699i 0.743961 + 0.540519i
\(362\) 21.8885 1.15044
\(363\) −9.94427 + 4.70228i −0.521939 + 0.246806i
\(364\) −10.9443 −0.573636
\(365\) 10.8541 + 7.88597i 0.568130 + 0.412770i
\(366\) 0 0
\(367\) −8.27051 25.4540i −0.431717 1.32869i −0.896414 0.443219i \(-0.853837\pi\)
0.464696 0.885470i \(-0.346163\pi\)
\(368\) −5.54508 + 4.02874i −0.289058 + 0.210013i
\(369\) −1.00000 + 0.726543i −0.0520579 + 0.0378223i
\(370\) 1.97214 + 6.06961i 0.102526 + 0.315544i
\(371\) −8.47214 + 26.0746i −0.439851 + 1.35372i
\(372\) −1.11803 0.812299i −0.0579674 0.0421158i
\(373\) −11.5279 −0.596890 −0.298445 0.954427i \(-0.596468\pi\)
−0.298445 + 0.954427i \(0.596468\pi\)
\(374\) −18.5451 8.00448i −0.958944 0.413902i
\(375\) 1.00000 0.0516398
\(376\) 3.50000 + 2.54290i 0.180499 + 0.131140i
\(377\) −2.73607 + 8.42075i −0.140915 + 0.433691i
\(378\) 1.00000 + 3.07768i 0.0514344 + 0.158299i
\(379\) 10.0000 7.26543i 0.513665 0.373200i −0.300547 0.953767i \(-0.597169\pi\)
0.814212 + 0.580567i \(0.197169\pi\)
\(380\) 1.00000 0.726543i 0.0512989 0.0372708i
\(381\) −4.52786 13.9353i −0.231970 0.713929i
\(382\) 2.85410 8.78402i 0.146029 0.449430i
\(383\) 0.263932 + 0.191758i 0.0134863 + 0.00979837i 0.594508 0.804090i \(-0.297347\pi\)
−0.581022 + 0.813888i \(0.697347\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −5.47214 9.23305i −0.278886 0.470560i
\(386\) −20.9443 −1.06604
\(387\) 0.0729490 + 0.0530006i 0.00370821 + 0.00269417i
\(388\) 5.76393 17.7396i 0.292619 0.900590i
\(389\) 2.11803 + 6.51864i 0.107389 + 0.330508i 0.990284 0.139062i \(-0.0444088\pi\)
−0.882895 + 0.469570i \(0.844409\pi\)
\(390\) −2.73607 + 1.98787i −0.138546 + 0.100660i
\(391\) 33.7705 24.5357i 1.70785 1.24082i
\(392\) 1.07295 + 3.30220i 0.0541921 + 0.166786i
\(393\) 1.04508 3.21644i 0.0527176 0.162248i
\(394\) −8.85410 6.43288i −0.446063 0.324084i
\(395\) 4.09017 0.205799
\(396\) 2.19098 2.48990i 0.110101 0.125122i
\(397\) 2.20163 0.110496 0.0552482 0.998473i \(-0.482405\pi\)
0.0552482 + 0.998473i \(0.482405\pi\)
\(398\) −21.0172 15.2699i −1.05350 0.765411i
\(399\) 1.23607 3.80423i 0.0618808 0.190450i
\(400\) 0.309017 + 0.951057i 0.0154508 + 0.0475528i
\(401\) −17.8541 + 12.9718i −0.891591 + 0.647779i −0.936292 0.351221i \(-0.885766\pi\)
0.0447011 + 0.999000i \(0.485766\pi\)
\(402\) −4.11803 + 2.99193i −0.205389 + 0.149224i
\(403\) −1.44427 4.44501i −0.0719443 0.221422i
\(404\) 4.82624 14.8536i 0.240114 0.738996i
\(405\) 0.809017 + 0.587785i 0.0402004 + 0.0292073i
\(406\) 8.47214 0.420465
\(407\) 1.97214 21.0745i 0.0977551 1.04462i
\(408\) 6.09017 0.301508
\(409\) −10.5000 7.62870i −0.519192 0.377215i 0.297108 0.954844i \(-0.403978\pi\)
−0.816299 + 0.577629i \(0.803978\pi\)
\(410\) −0.381966 + 1.17557i −0.0188640 + 0.0580573i
\(411\) 3.95492 + 12.1720i 0.195082 + 0.600399i
\(412\) −5.47214 + 3.97574i −0.269593 + 0.195871i
\(413\) 36.8885 26.8011i 1.81517 1.31880i
\(414\) 2.11803 + 6.51864i 0.104096 + 0.320374i
\(415\) −1.23607 + 3.80423i −0.0606762 + 0.186742i
\(416\) −2.73607 1.98787i −0.134147 0.0974633i
\(417\) −8.76393 −0.429172
\(418\) −4.00000 + 0.898056i −0.195646 + 0.0439254i
\(419\) 22.8541 1.11650 0.558248 0.829674i \(-0.311474\pi\)
0.558248 + 0.829674i \(0.311474\pi\)
\(420\) 2.61803 + 1.90211i 0.127747 + 0.0928136i
\(421\) −0.763932 + 2.35114i −0.0372318 + 0.114588i −0.967945 0.251162i \(-0.919187\pi\)
0.930713 + 0.365750i \(0.119187\pi\)
\(422\) −7.79837 24.0009i −0.379619 1.16835i
\(423\) 3.50000 2.54290i 0.170176 0.123640i
\(424\) −6.85410 + 4.97980i −0.332865 + 0.241840i
\(425\) −1.88197 5.79210i −0.0912888 0.280958i
\(426\) −3.23607 + 9.95959i −0.156788 + 0.482544i
\(427\) 0 0
\(428\) 6.29180 0.304125
\(429\) 10.9443 2.45714i 0.528394 0.118632i
\(430\) 0.0901699 0.00434838
\(431\) −18.0902 13.1433i −0.871373 0.633089i 0.0595822 0.998223i \(-0.481023\pi\)
−0.930955 + 0.365134i \(0.881023\pi\)
\(432\) −0.309017 + 0.951057i −0.0148676 + 0.0457577i
\(433\) −7.05573 21.7153i −0.339077 1.04357i −0.964679 0.263428i \(-0.915147\pi\)
0.625602 0.780142i \(-0.284853\pi\)
\(434\) −3.61803 + 2.62866i −0.173671 + 0.126180i
\(435\) 2.11803 1.53884i 0.101552 0.0737818i
\(436\) −0.763932 2.35114i −0.0365857 0.112599i
\(437\) 2.61803 8.05748i 0.125238 0.385442i
\(438\) 10.8541 + 7.88597i 0.518629 + 0.376806i
\(439\) 1.67376 0.0798843 0.0399422 0.999202i \(-0.487283\pi\)
0.0399422 + 0.999202i \(0.487283\pi\)
\(440\) 0.309017 3.30220i 0.0147318 0.157426i
\(441\) 3.47214 0.165340
\(442\) 16.6631 + 12.1065i 0.792584 + 0.575846i
\(443\) −5.76393 + 17.7396i −0.273853 + 0.842832i 0.715668 + 0.698441i \(0.246122\pi\)
−0.989521 + 0.144391i \(0.953878\pi\)
\(444\) 1.97214 + 6.06961i 0.0935934 + 0.288051i
\(445\) 13.9443 10.1311i 0.661022 0.480261i
\(446\) −5.85410 + 4.25325i −0.277200 + 0.201397i
\(447\) 2.35410 + 7.24518i 0.111345 + 0.342685i
\(448\) −1.00000 + 3.07768i −0.0472456 + 0.145407i
\(449\) 9.00000 + 6.53888i 0.424736 + 0.308589i 0.779541 0.626352i \(-0.215453\pi\)
−0.354804 + 0.934941i \(0.615453\pi\)
\(450\) 1.00000 0.0471405
\(451\) 2.70820 3.07768i 0.127524 0.144922i
\(452\) −19.5623 −0.920133
\(453\) 16.9443 + 12.3107i 0.796111 + 0.578409i
\(454\) 6.29180 19.3642i 0.295289 0.908805i
\(455\) 3.38197 + 10.4086i 0.158549 + 0.487964i
\(456\) 1.00000 0.726543i 0.0468293 0.0340235i
\(457\) −3.76393 + 2.73466i −0.176069 + 0.127922i −0.672330 0.740252i \(-0.734706\pi\)
0.496260 + 0.868174i \(0.334706\pi\)
\(458\) 0.236068 + 0.726543i 0.0110307 + 0.0339491i
\(459\) 1.88197 5.79210i 0.0878427 0.270352i
\(460\) 5.54508 + 4.02874i 0.258541 + 0.187841i
\(461\) 23.2148 1.08122 0.540610 0.841273i \(-0.318193\pi\)
0.540610 + 0.841273i \(0.318193\pi\)
\(462\) −5.47214 9.23305i −0.254587 0.429560i
\(463\) 11.8885 0.552507 0.276254 0.961085i \(-0.410907\pi\)
0.276254 + 0.961085i \(0.410907\pi\)
\(464\) 2.11803 + 1.53884i 0.0983273 + 0.0714389i
\(465\) −0.427051 + 1.31433i −0.0198040 + 0.0609505i
\(466\) −1.37132 4.22050i −0.0635253 0.195511i
\(467\) −23.0902 + 16.7760i −1.06849 + 0.776300i −0.975639 0.219380i \(-0.929596\pi\)
−0.0928462 + 0.995680i \(0.529596\pi\)
\(468\) −2.73607 + 1.98787i −0.126475 + 0.0918893i
\(469\) 5.09017 + 15.6659i 0.235042 + 0.723386i
\(470\) 1.33688 4.11450i 0.0616657 0.189788i
\(471\) −7.50000 5.44907i −0.345582 0.251080i
\(472\) 14.0902 0.648553
\(473\) −0.274575 0.118513i −0.0126250 0.00544923i
\(474\) 4.09017 0.187868
\(475\) −1.00000 0.726543i −0.0458831 0.0333361i
\(476\) 6.09017 18.7436i 0.279142 0.859112i
\(477\) 2.61803 + 8.05748i 0.119872 + 0.368927i
\(478\) 2.61803 1.90211i 0.119746 0.0870006i
\(479\) −10.3262 + 7.50245i −0.471818 + 0.342796i −0.798149 0.602460i \(-0.794187\pi\)
0.326331 + 0.945255i \(0.394187\pi\)
\(480\) 0.309017 + 0.951057i 0.0141046 + 0.0434096i
\(481\) −6.66970 + 20.5272i −0.304112 + 0.935960i
\(482\) 19.3262 + 14.0413i 0.880286 + 0.639565i
\(483\) 22.1803 1.00924
\(484\) −5.28115 + 9.64932i −0.240052 + 0.438606i
\(485\) −18.6525 −0.846965
\(486\) 0.809017 + 0.587785i 0.0366978 + 0.0266625i
\(487\) 3.52786 10.8576i 0.159863 0.492007i −0.838758 0.544504i \(-0.816718\pi\)
0.998621 + 0.0524969i \(0.0167180\pi\)
\(488\) 0 0
\(489\) 0.690983 0.502029i 0.0312473 0.0227025i
\(490\) 2.80902 2.04087i 0.126898 0.0921971i
\(491\) 8.66312 + 26.6623i 0.390961 + 1.20325i 0.932063 + 0.362297i \(0.118007\pi\)
−0.541102 + 0.840957i \(0.681993\pi\)
\(492\) −0.381966 + 1.17557i −0.0172204 + 0.0529988i
\(493\) −12.8992 9.37181i −0.580950 0.422085i
\(494\) 4.18034 0.188082
\(495\) −3.04508 1.31433i −0.136866 0.0590746i
\(496\) −1.38197 −0.0620521
\(497\) 27.4164 + 19.9192i 1.22979 + 0.893498i
\(498\) −1.23607 + 3.80423i −0.0553895 + 0.170471i
\(499\) −10.0344 30.8828i −0.449203 1.38251i −0.877808 0.479013i \(-0.840995\pi\)
0.428604 0.903492i \(-0.359005\pi\)
\(500\) 0.809017 0.587785i 0.0361803 0.0262866i
\(501\) −10.7361 + 7.80021i −0.479652 + 0.348488i
\(502\) 2.59017 + 7.97172i 0.115605 + 0.355795i
\(503\) −7.51722 + 23.1356i −0.335176 + 1.03157i 0.631459 + 0.775409i \(0.282456\pi\)
−0.966635 + 0.256157i \(0.917544\pi\)
\(504\) 2.61803 + 1.90211i 0.116617 + 0.0847268i
\(505\) −15.6180 −0.694993
\(506\) −11.5902 19.5559i −0.515246 0.869366i
\(507\) 1.56231 0.0693844
\(508\) −11.8541 8.61251i −0.525941 0.382118i
\(509\) 2.71885 8.36775i 0.120511 0.370894i −0.872546 0.488532i \(-0.837532\pi\)
0.993056 + 0.117638i \(0.0375324\pi\)
\(510\) −1.88197 5.79210i −0.0833349 0.256478i
\(511\) 35.1246 25.5195i 1.55382 1.12892i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −0.381966 1.17557i −0.0168642 0.0519027i
\(514\) 9.38197 28.8747i 0.413821 1.27361i
\(515\) 5.47214 + 3.97574i 0.241131 + 0.175192i
\(516\) 0.0901699 0.00396951
\(517\) −9.47871 + 10.7719i −0.416873 + 0.473747i
\(518\) 20.6525 0.907418
\(519\) −7.70820 5.60034i −0.338353 0.245828i
\(520\) −1.04508 + 3.21644i −0.0458300 + 0.141050i
\(521\) −0.729490 2.24514i −0.0319595 0.0983614i 0.933804 0.357784i \(-0.116468\pi\)
−0.965764 + 0.259423i \(0.916468\pi\)
\(522\) 2.11803 1.53884i 0.0927038 0.0673533i
\(523\) −31.4164 + 22.8254i −1.37374 + 0.998083i −0.376309 + 0.926494i \(0.622807\pi\)
−0.997434 + 0.0715891i \(0.977193\pi\)
\(524\) −1.04508 3.21644i −0.0456547 0.140511i
\(525\) 1.00000 3.07768i 0.0436436 0.134321i
\(526\) −5.54508 4.02874i −0.241777 0.175661i
\(527\) 8.41641 0.366624
\(528\) 0.309017 3.30220i 0.0134482 0.143710i
\(529\) 23.9787 1.04255
\(530\) 6.85410 + 4.97980i 0.297723 + 0.216309i
\(531\) 4.35410 13.4005i 0.188952 0.581534i
\(532\) −1.23607 3.80423i −0.0535903 0.164934i
\(533\) −3.38197 + 2.45714i −0.146489 + 0.106431i
\(534\) 13.9443 10.1311i 0.603428 0.438416i
\(535\) −1.94427 5.98385i −0.0840582 0.258705i
\(536\) −1.57295 + 4.84104i −0.0679410 + 0.209101i
\(537\) 14.6803 + 10.6659i 0.633503 + 0.460267i
\(538\) 3.20163 0.138032
\(539\) −11.2361 + 2.52265i −0.483972 + 0.108658i
\(540\) 1.00000 0.0430331
\(541\) −21.0902 15.3229i −0.906737 0.658783i 0.0334503 0.999440i \(-0.489350\pi\)
−0.940188 + 0.340657i \(0.889350\pi\)
\(542\) −1.97214 + 6.06961i −0.0847105 + 0.260712i
\(543\) −6.76393 20.8172i −0.290268 0.893353i
\(544\) 4.92705 3.57971i 0.211246 0.153479i
\(545\) −2.00000 + 1.45309i −0.0856706 + 0.0622433i
\(546\) 3.38197 + 10.4086i 0.144735 + 0.445448i
\(547\) 10.6074 32.6462i 0.453539 1.39585i −0.419302 0.907847i \(-0.637725\pi\)
0.872842 0.488004i \(-0.162275\pi\)
\(548\) 10.3541 + 7.52270i 0.442305 + 0.321354i
\(549\) 0 0
\(550\) −3.23607 + 0.726543i −0.137986 + 0.0309799i
\(551\) −3.23607 −0.137861
\(552\) 5.54508 + 4.02874i 0.236014 + 0.171475i
\(553\) 4.09017 12.5882i 0.173932 0.535307i
\(554\) −7.26393 22.3561i −0.308615 0.949819i
\(555\) 5.16312 3.75123i 0.219162 0.159231i
\(556\) −7.09017 + 5.15131i −0.300690 + 0.218464i
\(557\) −10.8541 33.4055i −0.459903 1.41544i −0.865281 0.501287i \(-0.832860\pi\)
0.405378 0.914149i \(-0.367140\pi\)
\(558\) −0.427051 + 1.31433i −0.0180785 + 0.0556399i
\(559\) 0.246711 + 0.179246i 0.0104348 + 0.00758130i
\(560\) 3.23607 0.136749
\(561\) −1.88197 + 20.1109i −0.0794567 + 0.849085i
\(562\) −7.52786 −0.317544
\(563\) −13.7984 10.0251i −0.581532 0.422508i 0.257744 0.966213i \(-0.417021\pi\)
−0.839276 + 0.543705i \(0.817021\pi\)
\(564\) 1.33688 4.11450i 0.0562928 0.173252i
\(565\) 6.04508 + 18.6049i 0.254319 + 0.782712i
\(566\) 18.0623 13.1230i 0.759215 0.551602i
\(567\) 2.61803 1.90211i 0.109947 0.0798812i
\(568\) 3.23607 + 9.95959i 0.135782 + 0.417895i
\(569\) −7.85410 + 24.1724i −0.329261 + 1.01336i 0.640219 + 0.768192i \(0.278844\pi\)
−0.969480 + 0.245169i \(0.921156\pi\)
\(570\) −1.00000 0.726543i −0.0418854 0.0304315i
\(571\) −28.3607 −1.18686 −0.593429 0.804887i \(-0.702226\pi\)
−0.593429 + 0.804887i \(0.702226\pi\)
\(572\) 7.40983 8.42075i 0.309821 0.352089i
\(573\) −9.23607 −0.385842
\(574\) 3.23607 + 2.35114i 0.135071 + 0.0981347i
\(575\) 2.11803 6.51864i 0.0883281 0.271846i
\(576\) 0.309017 + 0.951057i 0.0128757 + 0.0396274i
\(577\) −13.7984 + 10.0251i −0.574434 + 0.417351i −0.836713 0.547641i \(-0.815526\pi\)
0.262279 + 0.964992i \(0.415526\pi\)
\(578\) −16.2533 + 11.8087i −0.676048 + 0.491177i
\(579\) 6.47214 + 19.9192i 0.268973 + 0.827813i
\(580\) 0.809017 2.48990i 0.0335926 0.103387i
\(581\) 10.4721 + 7.60845i 0.434457 + 0.315652i
\(582\) −18.6525 −0.773170
\(583\) −14.3262 24.1724i −0.593332 1.00112i
\(584\) 13.4164 0.555175
\(585\) 2.73607 + 1.98787i 0.113122 + 0.0821883i
\(586\) −6.18034 + 19.0211i −0.255307 + 0.785756i
\(587\) −8.12461 25.0050i −0.335339 1.03207i −0.966555 0.256459i \(-0.917444\pi\)
0.631216 0.775607i \(-0.282556\pi\)
\(588\) 2.80902 2.04087i 0.115842 0.0841641i
\(589\) 1.38197 1.00406i 0.0569429 0.0413715i
\(590\) −4.35410 13.4005i −0.179256 0.551692i
\(591\) −3.38197 + 10.4086i −0.139115 + 0.428153i
\(592\) 5.16312 + 3.75123i 0.212203 + 0.154174i
\(593\) −17.6738 −0.725774 −0.362887 0.931833i \(-0.618209\pi\)
−0.362887 + 0.931833i \(0.618209\pi\)
\(594\) −3.04508 1.31433i −0.124941 0.0539275i
\(595\) −19.7082 −0.807958
\(596\) 6.16312 + 4.47777i 0.252451 + 0.183417i
\(597\) −8.02786 + 24.7072i −0.328559 + 1.01120i
\(598\) 7.16312 + 22.0458i 0.292922 + 0.901520i
\(599\) −14.7082 + 10.6861i −0.600961 + 0.436624i −0.846220 0.532834i \(-0.821127\pi\)
0.245259 + 0.969458i \(0.421127\pi\)
\(600\) 0.809017 0.587785i 0.0330280 0.0239962i
\(601\) −5.85410 18.0171i −0.238794 0.734932i −0.996595 0.0824468i \(-0.973727\pi\)
0.757802 0.652485i \(-0.226273\pi\)
\(602\) 0.0901699 0.277515i 0.00367505 0.0113106i
\(603\) 4.11803 + 2.99193i 0.167699 + 0.121841i
\(604\) 20.9443 0.852210
\(605\) 10.8090 + 2.04087i 0.439449 + 0.0829732i
\(606\) −15.6180 −0.634439
\(607\) 3.61803 + 2.62866i 0.146851 + 0.106694i 0.658785 0.752331i \(-0.271071\pi\)
−0.511934 + 0.859025i \(0.671071\pi\)
\(608\) 0.381966 1.17557i 0.0154908 0.0476757i
\(609\) −2.61803 8.05748i −0.106088 0.326506i
\(610\) 0 0
\(611\) 11.8369 8.60000i 0.478869 0.347919i
\(612\) −1.88197 5.79210i −0.0760740 0.234132i
\(613\) 1.85410 5.70634i 0.0748865 0.230477i −0.906606 0.421979i \(-0.861336\pi\)
0.981492 + 0.191502i \(0.0613357\pi\)
\(614\) 27.0623 + 19.6619i 1.09215 + 0.793490i
\(615\) 1.23607 0.0498431
\(616\) −9.85410 4.25325i −0.397033 0.171368i
\(617\) 26.3607 1.06124 0.530621 0.847610i \(-0.321959\pi\)
0.530621 + 0.847610i \(0.321959\pi\)
\(618\) 5.47214 + 3.97574i 0.220122 + 0.159928i
\(619\) 2.94427 9.06154i 0.118340 0.364214i −0.874289 0.485406i \(-0.838672\pi\)
0.992629 + 0.121192i \(0.0386717\pi\)
\(620\) 0.427051 + 1.31433i 0.0171508 + 0.0527847i
\(621\) 5.54508 4.02874i 0.222517 0.161668i
\(622\) −7.47214 + 5.42882i −0.299605 + 0.217676i
\(623\) −17.2361 53.0472i −0.690548 2.12529i
\(624\) −1.04508 + 3.21644i −0.0418369 + 0.128761i
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 8.47214 0.338615
\(627\) 2.09017 + 3.52671i 0.0834733 + 0.140843i
\(628\) −9.27051 −0.369934
\(629\) −31.4443 22.8456i −1.25377 0.910914i
\(630\) 1.00000 3.07768i 0.0398410 0.122618i
\(631\) −1.75329 5.39607i −0.0697973 0.214814i 0.910073 0.414447i \(-0.136025\pi\)
−0.979871 + 0.199633i \(0.936025\pi\)
\(632\) 3.30902 2.40414i 0.131626 0.0956316i
\(633\) −20.4164 + 14.8334i −0.811479 + 0.589574i
\(634\) −8.47214 26.0746i −0.336472 1.03555i
\(635\) −4.52786 + 13.9353i −0.179683 + 0.553007i
\(636\) 6.85410 + 4.97980i 0.271783 + 0.197462i
\(637\) 11.7426 0.465261
\(638\) −5.73607 + 6.51864i −0.227093 + 0.258075i
\(639\) 10.4721 0.414271
\(640\) 0.809017 + 0.587785i 0.0319792 + 0.0232343i
\(641\) 3.76393 11.5842i 0.148666 0.457548i −0.848798 0.528717i \(-0.822673\pi\)
0.997464 + 0.0711694i \(0.0226731\pi\)
\(642\) −1.94427 5.98385i −0.0767343 0.236164i
\(643\) 3.88197 2.82041i 0.153090 0.111226i −0.508604 0.861001i \(-0.669838\pi\)
0.661693 + 0.749775i \(0.269838\pi\)
\(644\) 17.9443 13.0373i 0.707103 0.513741i
\(645\) −0.0278640 0.0857567i −0.00109715 0.00337667i
\(646\) −2.32624 + 7.15942i −0.0915246 + 0.281684i
\(647\) 10.0172 + 7.27794i 0.393818 + 0.286125i 0.767018 0.641625i \(-0.221740\pi\)
−0.373200 + 0.927751i \(0.621740\pi\)
\(648\) 1.00000 0.0392837
\(649\) −4.35410 + 46.5285i −0.170913 + 1.82640i
\(650\) 3.38197 0.132652
\(651\) 3.61803 + 2.62866i 0.141802 + 0.103025i
\(652\) 0.263932 0.812299i 0.0103364 0.0318121i
\(653\) 7.58359 + 23.3399i 0.296769 + 0.913361i 0.982622 + 0.185620i \(0.0594294\pi\)
−0.685853 + 0.727740i \(0.740571\pi\)
\(654\) −2.00000 + 1.45309i −0.0782062 + 0.0568201i
\(655\) −2.73607 + 1.98787i −0.106907 + 0.0776725i
\(656\) 0.381966 + 1.17557i 0.0149133 + 0.0458983i
\(657\) 4.14590 12.7598i 0.161747 0.497806i
\(658\) −11.3262 8.22899i −0.441543 0.320800i
\(659\) −15.4164 −0.600538 −0.300269 0.953855i \(-0.597076\pi\)
−0.300269 + 0.953855i \(0.597076\pi\)
\(660\) −3.23607 + 0.726543i −0.125964 + 0.0282806i
\(661\) 8.36068 0.325193 0.162596 0.986693i \(-0.448013\pi\)
0.162596 + 0.986693i \(0.448013\pi\)
\(662\) −7.47214 5.42882i −0.290413 0.210997i
\(663\) 6.36475 19.5887i 0.247186 0.760761i
\(664\) 1.23607 + 3.80423i 0.0479687 + 0.147633i
\(665\) −3.23607 + 2.35114i −0.125489 + 0.0911733i
\(666\) 5.16312 3.75123i 0.200067 0.145357i
\(667\) −5.54508 17.0660i −0.214707 0.660799i
\(668\) −4.10081 + 12.6210i −0.158665 + 0.488321i
\(669\) 5.85410 + 4.25325i 0.226333 + 0.164440i
\(670\) 5.09017 0.196650
\(671\) 0 0
\(672\) 3.23607 0.124834
\(673\) 12.7082 + 9.23305i 0.489865 + 0.355908i 0.805132 0.593095i \(-0.202094\pi\)
−0.315267 + 0.949003i \(0.602094\pi\)
\(674\) −4.70820 + 14.4904i −0.181353 + 0.558148i
\(675\) −0.309017 0.951057i −0.0118941 0.0366062i
\(676\) 1.26393 0.918300i 0.0486128 0.0353192i
\(677\) −22.0344 + 16.0090i −0.846852 + 0.615274i −0.924276 0.381724i \(-0.875330\pi\)
0.0774240 + 0.996998i \(0.475330\pi\)
\(678\) 6.04508 + 18.6049i 0.232160 + 0.714515i
\(679\) −18.6525 + 57.4064i −0.715816 + 2.20306i
\(680\) −4.92705 3.57971i −0.188944 0.137276i
\(681\) −20.3607 −0.780223
\(682\) 0.427051 4.56352i 0.0163526 0.174746i
\(683\) 21.1246 0.808311 0.404155 0.914690i \(-0.367565\pi\)
0.404155 + 0.914690i \(0.367565\pi\)
\(684\) −1.00000 0.726543i −0.0382360 0.0277800i
\(685\) 3.95492 12.1720i 0.151110 0.465067i
\(686\) 3.52786 + 10.8576i 0.134694 + 0.414547i
\(687\) 0.618034 0.449028i 0.0235795 0.0171315i
\(688\) 0.0729490 0.0530006i 0.00278116 0.00202063i
\(689\) 8.85410 + 27.2501i 0.337314 + 1.03815i
\(690\) 2.11803 6.51864i 0.0806322 0.248160i
\(691\) 16.7082 + 12.1392i 0.635610 + 0.461798i 0.858339 0.513083i \(-0.171497\pi\)
−0.222729 + 0.974880i \(0.571497\pi\)
\(692\) −9.52786 −0.362195
\(693\) −7.09017 + 8.05748i −0.269333 + 0.306078i
\(694\) 35.8885 1.36231
\(695\) 7.09017 + 5.15131i 0.268945 + 0.195400i
\(696\) 0.809017 2.48990i 0.0306657 0.0943794i
\(697\) −2.32624 7.15942i −0.0881125 0.271183i
\(698\) 9.23607 6.71040i 0.349590 0.253992i
\(699\) −3.59017 + 2.60841i −0.135793 + 0.0986592i
\(700\) −1.00000 3.07768i −0.0377964 0.116326i
\(701\) −1.09017 + 3.35520i −0.0411752 + 0.126724i −0.969531 0.244968i \(-0.921222\pi\)
0.928356 + 0.371692i \(0.121222\pi\)
\(702\) 2.73607 + 1.98787i 0.103266 + 0.0750273i
\(703\) −7.88854 −0.297522
\(704\) −1.69098 2.85317i −0.0637313 0.107533i
\(705\) −4.32624 −0.162936
\(706\) −19.1074 13.8823i −0.719116 0.522468i
\(707\) −15.6180 + 48.0674i −0.587377 + 1.80776i
\(708\) −4.35410 13.4005i −0.163637 0.503623i
\(709\) 8.56231 6.22088i 0.321564 0.233630i −0.415278 0.909694i \(-0.636316\pi\)
0.736843 + 0.676064i \(0.236316\pi\)
\(710\) 8.47214 6.15537i 0.317954 0.231007i
\(711\) −1.26393 3.88998i −0.0474012 0.145886i
\(712\) 5.32624 16.3925i 0.199609 0.614334i
\(713\) 7.66312 + 5.56758i 0.286986 + 0.208508i
\(714\) −19.7082 −0.737561
\(715\) −10.2984 4.44501i −0.385137 0.166234i
\(716\) 18.1459 0.678144
\(717\) −2.61803 1.90211i −0.0977723 0.0710357i
\(718\) −3.76393 + 11.5842i −0.140469 + 0.432318i
\(719\) 12.5623 + 38.6628i 0.468495 + 1.44188i 0.854533 + 0.519397i \(0.173843\pi\)
−0.386038 + 0.922483i \(0.626157\pi\)
\(720\) 0.809017 0.587785i 0.0301503 0.0219055i
\(721\) 17.7082 12.8658i 0.659488 0.479146i
\(722\) −5.39919 16.6170i −0.200937 0.618420i
\(723\) 7.38197 22.7194i 0.274538 0.844942i
\(724\) −17.7082 12.8658i −0.658120 0.478152i
\(725\) −2.61803 −0.0972313
\(726\) 10.8090 + 2.04087i 0.401160 + 0.0757438i
\(727\) −50.1803 −1.86109 −0.930543 0.366183i \(-0.880664\pi\)
−0.930543 + 0.366183i \(0.880664\pi\)
\(728\) 8.85410 + 6.43288i 0.328155 + 0.238418i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −4.14590 12.7598i −0.153447 0.472260i
\(731\) −0.444272 + 0.322782i −0.0164320 + 0.0119385i
\(732\) 0 0
\(733\) 15.8607 + 48.8142i 0.585828 + 1.80299i 0.595921 + 0.803043i \(0.296787\pi\)
−0.0100937 + 0.999949i \(0.503213\pi\)
\(734\) −8.27051 + 25.4540i −0.305270 + 0.939525i
\(735\) −2.80902 2.04087i −0.103612 0.0752786i
\(736\) 6.85410 0.252646
\(737\) −15.5000 6.69015i −0.570950 0.246435i
\(738\) 1.23607 0.0455003
\(739\) −21.8541 15.8779i −0.803916 0.584079i 0.108144 0.994135i \(-0.465509\pi\)
−0.912060 + 0.410056i \(0.865509\pi\)
\(740\) 1.97214 6.06961i 0.0724972 0.223123i
\(741\) −1.29180 3.97574i −0.0474553 0.146052i
\(742\) 22.1803 16.1150i 0.814266 0.591599i
\(743\) −8.73607 + 6.34712i −0.320495 + 0.232853i −0.736387 0.676561i \(-0.763470\pi\)
0.415892 + 0.909414i \(0.363470\pi\)
\(744\) 0.427051 + 1.31433i 0.0156564 + 0.0481856i
\(745\) 2.35410 7.24518i 0.0862476 0.265443i
\(746\) 9.32624 + 6.77591i 0.341458 + 0.248084i
\(747\) 4.00000 0.146352
\(748\) 10.2984 + 17.3763i 0.376546 + 0.635340i
\(749\) −20.3607 −0.743963
\(750\) −0.809017 0.587785i −0.0295411 0.0214629i
\(751\) −8.97214 + 27.6134i −0.327398 + 1.00763i 0.642949 + 0.765909i \(0.277711\pi\)
−0.970347 + 0.241718i \(0.922289\pi\)
\(752\) −1.33688 4.11450i −0.0487510 0.150040i
\(753\) 6.78115 4.92680i 0.247119 0.179542i
\(754\) 7.16312 5.20431i 0.260865 0.189530i
\(755\) −6.47214 19.9192i −0.235545 0.724933i
\(756\) 1.00000 3.07768i 0.0363696 0.111934i
\(757\) 43.5689 + 31.6546i 1.58354 + 1.15051i 0.912494 + 0.409090i \(0.134154\pi\)
0.671044 + 0.741417i \(0.265846\pi\)
\(758\) −12.3607 −0.448960
\(759\) −15.0172 + 17.0660i −0.545091 + 0.619457i
\(760\) −1.23607 −0.0448369
\(761\) 8.09017 + 5.87785i 0.293268 + 0.213072i 0.724684 0.689081i \(-0.241986\pi\)
−0.431416 + 0.902153i \(0.641986\pi\)
\(762\) −4.52786 + 13.9353i −0.164027 + 0.504824i
\(763\) 2.47214 + 7.60845i 0.0894973 + 0.275444i
\(764\) −7.47214 + 5.42882i −0.270332 + 0.196408i
\(765\) −4.92705 + 3.57971i −0.178138 + 0.129425i
\(766\) −0.100813 0.310271i −0.00364252 0.0112105i
\(767\) 14.7254 45.3202i 0.531704 1.63642i
\(768\) 0.809017 + 0.587785i 0.0291929 + 0.0212099i
\(769\) −24.4508 −0.881720 −0.440860 0.897576i \(-0.645327\pi\)
−0.440860 + 0.897576i \(0.645327\pi\)
\(770\) −1.00000 + 10.6861i −0.0360375 + 0.385102i
\(771\) −30.3607 −1.09341
\(772\) 16.9443 + 12.3107i 0.609838 + 0.443073i
\(773\) 6.05573 18.6376i 0.217809 0.670348i −0.781133 0.624365i \(-0.785358\pi\)
0.998942 0.0459835i \(-0.0146422\pi\)
\(774\) −0.0278640 0.0857567i −0.00100155 0.00308246i
\(775\) 1.11803 0.812299i