Properties

Label 330.2.m.b.181.1
Level $330$
Weight $2$
Character 330.181
Analytic conductor $2.635$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 330.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.63506326670\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 330.181
Dual form 330.2.m.b.31.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(0.809017 + 0.587785i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-0.309017 + 0.951057i) q^{6} +(-1.00000 + 0.726543i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(0.309017 + 0.951057i) q^{9} +O(q^{10})\) \(q+(0.309017 + 0.951057i) q^{2} +(0.809017 + 0.587785i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-0.309017 + 0.951057i) q^{6} +(-1.00000 + 0.726543i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(0.309017 + 0.951057i) q^{9} -1.00000 q^{10} +(-2.54508 + 2.12663i) q^{11} -1.00000 q^{12} +(1.73607 + 5.34307i) q^{13} +(-1.00000 - 0.726543i) q^{14} +(-0.809017 + 0.587785i) q^{15} +(0.309017 - 0.951057i) q^{16} +(1.57295 - 4.84104i) q^{17} +(-0.809017 + 0.587785i) q^{18} +(2.61803 + 1.90211i) q^{19} +(-0.309017 - 0.951057i) q^{20} -1.23607 q^{21} +(-2.80902 - 1.76336i) q^{22} +0.145898 q^{23} +(-0.309017 - 0.951057i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(-4.54508 + 3.30220i) q^{26} +(-0.309017 + 0.951057i) q^{27} +(0.381966 - 1.17557i) q^{28} +(0.309017 - 0.224514i) q^{29} +(-0.809017 - 0.587785i) q^{30} +(-1.11803 - 3.44095i) q^{31} +1.00000 q^{32} +(-3.30902 + 0.224514i) q^{33} +5.09017 q^{34} +(-0.381966 - 1.17557i) q^{35} +(-0.809017 - 0.587785i) q^{36} +(6.97214 - 5.06555i) q^{37} +(-1.00000 + 3.07768i) q^{38} +(-1.73607 + 5.34307i) q^{39} +(0.809017 - 0.587785i) q^{40} +(2.61803 + 1.90211i) q^{41} +(-0.381966 - 1.17557i) q^{42} +11.0902 q^{43} +(0.809017 - 3.21644i) q^{44} -1.00000 q^{45} +(0.0450850 + 0.138757i) q^{46} +(-9.16312 - 6.65740i) q^{47} +(0.809017 - 0.587785i) q^{48} +(-1.69098 + 5.20431i) q^{49} +(0.309017 - 0.951057i) q^{50} +(4.11803 - 2.99193i) q^{51} +(-4.54508 - 3.30220i) q^{52} +(-0.145898 - 0.449028i) q^{53} -1.00000 q^{54} +(-1.23607 - 3.07768i) q^{55} +1.23607 q^{56} +(1.00000 + 3.07768i) q^{57} +(0.309017 + 0.224514i) q^{58} +(-2.35410 + 1.71036i) q^{59} +(0.309017 - 0.951057i) q^{60} +(2.92705 - 2.12663i) q^{62} +(-1.00000 - 0.726543i) q^{63} +(0.309017 + 0.951057i) q^{64} -5.61803 q^{65} +(-1.23607 - 3.07768i) q^{66} +6.09017 q^{67} +(1.57295 + 4.84104i) q^{68} +(0.118034 + 0.0857567i) q^{69} +(1.00000 - 0.726543i) q^{70} +(0.472136 - 1.45309i) q^{71} +(0.309017 - 0.951057i) q^{72} +(10.8541 - 7.88597i) q^{73} +(6.97214 + 5.06555i) q^{74} +(-0.309017 - 0.951057i) q^{75} -3.23607 q^{76} +(1.00000 - 3.97574i) q^{77} -5.61803 q^{78} +(2.19098 + 6.74315i) q^{79} +(0.809017 + 0.587785i) q^{80} +(-0.809017 + 0.587785i) q^{81} +(-1.00000 + 3.07768i) q^{82} +(1.23607 - 3.80423i) q^{83} +(1.00000 - 0.726543i) q^{84} +(4.11803 + 2.99193i) q^{85} +(3.42705 + 10.5474i) q^{86} +0.381966 q^{87} +(3.30902 - 0.224514i) q^{88} +12.7639 q^{89} +(-0.309017 - 0.951057i) q^{90} +(-5.61803 - 4.08174i) q^{91} +(-0.118034 + 0.0857567i) q^{92} +(1.11803 - 3.44095i) q^{93} +(3.50000 - 10.7719i) q^{94} +(-2.61803 + 1.90211i) q^{95} +(0.809017 + 0.587785i) q^{96} +(-3.90983 - 12.0332i) q^{97} -5.47214 q^{98} +(-2.80902 - 1.76336i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 4q^{7} - q^{8} - q^{9} + O(q^{10}) \) \( 4q - q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 4q^{7} - q^{8} - q^{9} - 4q^{10} + q^{11} - 4q^{12} - 2q^{13} - 4q^{14} - q^{15} - q^{16} + 13q^{17} - q^{18} + 6q^{19} + q^{20} + 4q^{21} - 9q^{22} + 14q^{23} + q^{24} - q^{25} - 7q^{26} + q^{27} + 6q^{28} - q^{29} - q^{30} + 4q^{32} - 11q^{33} - 2q^{34} - 6q^{35} - q^{36} + 10q^{37} - 4q^{38} + 2q^{39} + q^{40} + 6q^{41} - 6q^{42} + 22q^{43} + q^{44} - 4q^{45} - 11q^{46} - 21q^{47} + q^{48} - 9q^{49} - q^{50} + 12q^{51} - 7q^{52} - 14q^{53} - 4q^{54} + 4q^{55} - 4q^{56} + 4q^{57} - q^{58} + 4q^{59} - q^{60} + 5q^{62} - 4q^{63} - q^{64} - 18q^{65} + 4q^{66} + 2q^{67} + 13q^{68} - 4q^{69} + 4q^{70} - 16q^{71} - q^{72} + 30q^{73} + 10q^{74} + q^{75} - 4q^{76} + 4q^{77} - 18q^{78} + 11q^{79} + q^{80} - q^{81} - 4q^{82} - 4q^{83} + 4q^{84} + 12q^{85} + 7q^{86} + 6q^{87} + 11q^{88} + 60q^{89} + q^{90} - 18q^{91} + 4q^{92} + 14q^{94} - 6q^{95} + q^{96} - 38q^{97} - 4q^{98} - 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/330\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(211\) \(221\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) −0.309017 + 0.951057i −0.126156 + 0.388267i
\(7\) −1.00000 + 0.726543i −0.377964 + 0.274607i −0.760506 0.649331i \(-0.775049\pi\)
0.382541 + 0.923938i \(0.375049\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) −1.00000 −0.316228
\(11\) −2.54508 + 2.12663i −0.767372 + 0.641202i
\(12\) −1.00000 −0.288675
\(13\) 1.73607 + 5.34307i 0.481499 + 1.48190i 0.836989 + 0.547220i \(0.184314\pi\)
−0.355490 + 0.934680i \(0.615686\pi\)
\(14\) −1.00000 0.726543i −0.267261 0.194177i
\(15\) −0.809017 + 0.587785i −0.208887 + 0.151765i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 1.57295 4.84104i 0.381496 1.17412i −0.557494 0.830181i \(-0.688237\pi\)
0.938990 0.343944i \(-0.111763\pi\)
\(18\) −0.809017 + 0.587785i −0.190687 + 0.138542i
\(19\) 2.61803 + 1.90211i 0.600618 + 0.436375i 0.846098 0.533027i \(-0.178946\pi\)
−0.245480 + 0.969402i \(0.578946\pi\)
\(20\) −0.309017 0.951057i −0.0690983 0.212663i
\(21\) −1.23607 −0.269732
\(22\) −2.80902 1.76336i −0.598884 0.375949i
\(23\) 0.145898 0.0304218 0.0152109 0.999884i \(-0.495158\pi\)
0.0152109 + 0.999884i \(0.495158\pi\)
\(24\) −0.309017 0.951057i −0.0630778 0.194134i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −4.54508 + 3.30220i −0.891364 + 0.647614i
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) 0.381966 1.17557i 0.0721848 0.222162i
\(29\) 0.309017 0.224514i 0.0573830 0.0416912i −0.558724 0.829354i \(-0.688709\pi\)
0.616107 + 0.787662i \(0.288709\pi\)
\(30\) −0.809017 0.587785i −0.147706 0.107314i
\(31\) −1.11803 3.44095i −0.200805 0.618014i −0.999860 0.0167555i \(-0.994666\pi\)
0.799055 0.601258i \(-0.205334\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.30902 + 0.224514i −0.576026 + 0.0390829i
\(34\) 5.09017 0.872957
\(35\) −0.381966 1.17557i −0.0645640 0.198708i
\(36\) −0.809017 0.587785i −0.134836 0.0979642i
\(37\) 6.97214 5.06555i 1.14621 0.832772i 0.158239 0.987401i \(-0.449418\pi\)
0.987973 + 0.154629i \(0.0494182\pi\)
\(38\) −1.00000 + 3.07768i −0.162221 + 0.499266i
\(39\) −1.73607 + 5.34307i −0.277993 + 0.855576i
\(40\) 0.809017 0.587785i 0.127917 0.0929370i
\(41\) 2.61803 + 1.90211i 0.408868 + 0.297060i 0.773143 0.634231i \(-0.218683\pi\)
−0.364275 + 0.931291i \(0.618683\pi\)
\(42\) −0.381966 1.17557i −0.0589386 0.181394i
\(43\) 11.0902 1.69124 0.845618 0.533789i \(-0.179232\pi\)
0.845618 + 0.533789i \(0.179232\pi\)
\(44\) 0.809017 3.21644i 0.121964 0.484897i
\(45\) −1.00000 −0.149071
\(46\) 0.0450850 + 0.138757i 0.00664742 + 0.0204586i
\(47\) −9.16312 6.65740i −1.33658 0.971081i −0.999562 0.0295820i \(-0.990582\pi\)
−0.337016 0.941499i \(-0.609418\pi\)
\(48\) 0.809017 0.587785i 0.116772 0.0848395i
\(49\) −1.69098 + 5.20431i −0.241569 + 0.743473i
\(50\) 0.309017 0.951057i 0.0437016 0.134500i
\(51\) 4.11803 2.99193i 0.576640 0.418954i
\(52\) −4.54508 3.30220i −0.630290 0.457932i
\(53\) −0.145898 0.449028i −0.0200406 0.0616787i 0.940536 0.339694i \(-0.110323\pi\)
−0.960577 + 0.278015i \(0.910323\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.23607 3.07768i −0.166671 0.414995i
\(56\) 1.23607 0.165177
\(57\) 1.00000 + 3.07768i 0.132453 + 0.407649i
\(58\) 0.309017 + 0.224514i 0.0405759 + 0.0294801i
\(59\) −2.35410 + 1.71036i −0.306478 + 0.222669i −0.730384 0.683037i \(-0.760659\pi\)
0.423906 + 0.905706i \(0.360659\pi\)
\(60\) 0.309017 0.951057i 0.0398939 0.122781i
\(61\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(62\) 2.92705 2.12663i 0.371736 0.270082i
\(63\) −1.00000 0.726543i −0.125988 0.0915358i
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) −5.61803 −0.696831
\(66\) −1.23607 3.07768i −0.152149 0.378837i
\(67\) 6.09017 0.744033 0.372016 0.928226i \(-0.378667\pi\)
0.372016 + 0.928226i \(0.378667\pi\)
\(68\) 1.57295 + 4.84104i 0.190748 + 0.587062i
\(69\) 0.118034 + 0.0857567i 0.0142096 + 0.0103239i
\(70\) 1.00000 0.726543i 0.119523 0.0868384i
\(71\) 0.472136 1.45309i 0.0560322 0.172449i −0.919124 0.393969i \(-0.871102\pi\)
0.975156 + 0.221520i \(0.0711017\pi\)
\(72\) 0.309017 0.951057i 0.0364180 0.112083i
\(73\) 10.8541 7.88597i 1.27038 0.922983i 0.271159 0.962535i \(-0.412593\pi\)
0.999218 + 0.0395520i \(0.0125931\pi\)
\(74\) 6.97214 + 5.06555i 0.810494 + 0.588859i
\(75\) −0.309017 0.951057i −0.0356822 0.109819i
\(76\) −3.23607 −0.371202
\(77\) 1.00000 3.97574i 0.113961 0.453078i
\(78\) −5.61803 −0.636117
\(79\) 2.19098 + 6.74315i 0.246505 + 0.758664i 0.995385 + 0.0959588i \(0.0305917\pi\)
−0.748880 + 0.662705i \(0.769408\pi\)
\(80\) 0.809017 + 0.587785i 0.0904508 + 0.0657164i
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −1.00000 + 3.07768i −0.110432 + 0.339873i
\(83\) 1.23607 3.80423i 0.135676 0.417568i −0.860018 0.510263i \(-0.829548\pi\)
0.995695 + 0.0926948i \(0.0295481\pi\)
\(84\) 1.00000 0.726543i 0.109109 0.0792723i
\(85\) 4.11803 + 2.99193i 0.446663 + 0.324520i
\(86\) 3.42705 + 10.5474i 0.369548 + 1.13735i
\(87\) 0.381966 0.0409511
\(88\) 3.30902 0.224514i 0.352742 0.0239333i
\(89\) 12.7639 1.35297 0.676487 0.736455i \(-0.263501\pi\)
0.676487 + 0.736455i \(0.263501\pi\)
\(90\) −0.309017 0.951057i −0.0325733 0.100250i
\(91\) −5.61803 4.08174i −0.588930 0.427883i
\(92\) −0.118034 + 0.0857567i −0.0123059 + 0.00894076i
\(93\) 1.11803 3.44095i 0.115935 0.356810i
\(94\) 3.50000 10.7719i 0.360997 1.11104i
\(95\) −2.61803 + 1.90211i −0.268605 + 0.195153i
\(96\) 0.809017 + 0.587785i 0.0825700 + 0.0599906i
\(97\) −3.90983 12.0332i −0.396983 1.22179i −0.927406 0.374055i \(-0.877967\pi\)
0.530423 0.847733i \(-0.322033\pi\)
\(98\) −5.47214 −0.552769
\(99\) −2.80902 1.76336i −0.282317 0.177224i
\(100\) 1.00000 0.100000
\(101\) 4.13525 + 12.7270i 0.411473 + 1.26638i 0.915368 + 0.402619i \(0.131900\pi\)
−0.503894 + 0.863765i \(0.668100\pi\)
\(102\) 4.11803 + 2.99193i 0.407746 + 0.296245i
\(103\) −9.09017 + 6.60440i −0.895681 + 0.650750i −0.937353 0.348381i \(-0.886732\pi\)
0.0416720 + 0.999131i \(0.486732\pi\)
\(104\) 1.73607 5.34307i 0.170235 0.523931i
\(105\) 0.381966 1.17557i 0.0372761 0.114724i
\(106\) 0.381966 0.277515i 0.0370998 0.0269546i
\(107\) −15.9443 11.5842i −1.54139 1.11989i −0.949456 0.313900i \(-0.898364\pi\)
−0.591935 0.805986i \(-0.701636\pi\)
\(108\) −0.309017 0.951057i −0.0297352 0.0915155i
\(109\) 6.47214 0.619918 0.309959 0.950750i \(-0.399685\pi\)
0.309959 + 0.950750i \(0.399685\pi\)
\(110\) 2.54508 2.12663i 0.242664 0.202766i
\(111\) 8.61803 0.817988
\(112\) 0.381966 + 1.17557i 0.0360924 + 0.111081i
\(113\) −0.454915 0.330515i −0.0427948 0.0310922i 0.566182 0.824280i \(-0.308420\pi\)
−0.608977 + 0.793188i \(0.708420\pi\)
\(114\) −2.61803 + 1.90211i −0.245201 + 0.178149i
\(115\) −0.0450850 + 0.138757i −0.00420420 + 0.0129392i
\(116\) −0.118034 + 0.363271i −0.0109592 + 0.0337289i
\(117\) −4.54508 + 3.30220i −0.420193 + 0.305288i
\(118\) −2.35410 1.71036i −0.216713 0.157451i
\(119\) 1.94427 + 5.98385i 0.178231 + 0.548539i
\(120\) 1.00000 0.0912871
\(121\) 1.95492 10.8249i 0.177720 0.984081i
\(122\) 0 0
\(123\) 1.00000 + 3.07768i 0.0901670 + 0.277505i
\(124\) 2.92705 + 2.12663i 0.262857 + 0.190977i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0.381966 1.17557i 0.0340282 0.104728i
\(127\) −5.14590 + 15.8374i −0.456625 + 1.40535i 0.412593 + 0.910916i \(0.364623\pi\)
−0.869217 + 0.494430i \(0.835377\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 8.97214 + 6.51864i 0.789953 + 0.573934i
\(130\) −1.73607 5.34307i −0.152263 0.468618i
\(131\) −5.61803 −0.490850 −0.245425 0.969416i \(-0.578927\pi\)
−0.245425 + 0.969416i \(0.578927\pi\)
\(132\) 2.54508 2.12663i 0.221521 0.185099i
\(133\) −4.00000 −0.346844
\(134\) 1.88197 + 5.79210i 0.162577 + 0.500361i
\(135\) −0.809017 0.587785i −0.0696291 0.0505885i
\(136\) −4.11803 + 2.99193i −0.353119 + 0.256556i
\(137\) 3.64590 11.2209i 0.311490 0.958668i −0.665685 0.746233i \(-0.731861\pi\)
0.977175 0.212435i \(-0.0681394\pi\)
\(138\) −0.0450850 + 0.138757i −0.00383789 + 0.0118118i
\(139\) −10.7082 + 7.77997i −0.908258 + 0.659888i −0.940574 0.339590i \(-0.889712\pi\)
0.0323157 + 0.999478i \(0.489712\pi\)
\(140\) 1.00000 + 0.726543i 0.0845154 + 0.0614041i
\(141\) −3.50000 10.7719i −0.294753 0.907157i
\(142\) 1.52786 0.128216
\(143\) −15.7812 9.90659i −1.31969 0.828431i
\(144\) 1.00000 0.0833333
\(145\) 0.118034 + 0.363271i 0.00980219 + 0.0301680i
\(146\) 10.8541 + 7.88597i 0.898292 + 0.652647i
\(147\) −4.42705 + 3.21644i −0.365137 + 0.265288i
\(148\) −2.66312 + 8.19624i −0.218907 + 0.673727i
\(149\) −1.66312 + 5.11855i −0.136248 + 0.419328i −0.995782 0.0917502i \(-0.970754\pi\)
0.859534 + 0.511079i \(0.170754\pi\)
\(150\) 0.809017 0.587785i 0.0660560 0.0479925i
\(151\) −2.47214 1.79611i −0.201180 0.146166i 0.482634 0.875822i \(-0.339680\pi\)
−0.683814 + 0.729656i \(0.739680\pi\)
\(152\) −1.00000 3.07768i −0.0811107 0.249633i
\(153\) 5.09017 0.411516
\(154\) 4.09017 0.277515i 0.329595 0.0223628i
\(155\) 3.61803 0.290607
\(156\) −1.73607 5.34307i −0.138997 0.427788i
\(157\) −19.6353 14.2658i −1.56706 1.13854i −0.929901 0.367809i \(-0.880108\pi\)
−0.637163 0.770729i \(-0.719892\pi\)
\(158\) −5.73607 + 4.16750i −0.456337 + 0.331548i
\(159\) 0.145898 0.449028i 0.0115705 0.0356102i
\(160\) −0.309017 + 0.951057i −0.0244299 + 0.0751876i
\(161\) −0.145898 + 0.106001i −0.0114984 + 0.00835406i
\(162\) −0.809017 0.587785i −0.0635624 0.0461808i
\(163\) −1.80902 5.56758i −0.141693 0.436087i 0.854878 0.518829i \(-0.173632\pi\)
−0.996571 + 0.0827427i \(0.973632\pi\)
\(164\) −3.23607 −0.252694
\(165\) 0.809017 3.21644i 0.0629819 0.250400i
\(166\) 4.00000 0.310460
\(167\) 6.26393 + 19.2784i 0.484718 + 1.49181i 0.832389 + 0.554191i \(0.186972\pi\)
−0.347672 + 0.937616i \(0.613028\pi\)
\(168\) 1.00000 + 0.726543i 0.0771517 + 0.0560540i
\(169\) −15.0172 + 10.9106i −1.15517 + 0.839281i
\(170\) −1.57295 + 4.84104i −0.120640 + 0.371291i
\(171\) −1.00000 + 3.07768i −0.0764719 + 0.235356i
\(172\) −8.97214 + 6.51864i −0.684119 + 0.497042i
\(173\) 14.9443 + 10.8576i 1.13619 + 0.825492i 0.986584 0.163254i \(-0.0521989\pi\)
0.149608 + 0.988745i \(0.452199\pi\)
\(174\) 0.118034 + 0.363271i 0.00894813 + 0.0275395i
\(175\) 1.23607 0.0934380
\(176\) 1.23607 + 3.07768i 0.0931721 + 0.231989i
\(177\) −2.90983 −0.218716
\(178\) 3.94427 + 12.1392i 0.295636 + 0.909873i
\(179\) −20.1074 14.6089i −1.50290 1.09192i −0.969210 0.246237i \(-0.920806\pi\)
−0.533687 0.845682i \(-0.679194\pi\)
\(180\) 0.809017 0.587785i 0.0603006 0.0438109i
\(181\) −4.29180 + 13.2088i −0.319007 + 0.981802i 0.655067 + 0.755571i \(0.272640\pi\)
−0.974074 + 0.226231i \(0.927360\pi\)
\(182\) 2.14590 6.60440i 0.159065 0.489550i
\(183\) 0 0
\(184\) −0.118034 0.0857567i −0.00870158 0.00632207i
\(185\) 2.66312 + 8.19624i 0.195796 + 0.602599i
\(186\) 3.61803 0.265287
\(187\) 6.29180 + 15.6659i 0.460102 + 1.14561i
\(188\) 11.3262 0.826051
\(189\) −0.381966 1.17557i −0.0277839 0.0855102i
\(190\) −2.61803 1.90211i −0.189932 0.137994i
\(191\) −3.85410 + 2.80017i −0.278873 + 0.202613i −0.718426 0.695604i \(-0.755137\pi\)
0.439553 + 0.898217i \(0.355137\pi\)
\(192\) −0.309017 + 0.951057i −0.0223014 + 0.0686366i
\(193\) −0.944272 + 2.90617i −0.0679702 + 0.209191i −0.979273 0.202547i \(-0.935078\pi\)
0.911302 + 0.411738i \(0.135078\pi\)
\(194\) 10.2361 7.43694i 0.734907 0.533941i
\(195\) −4.54508 3.30220i −0.325480 0.236475i
\(196\) −1.69098 5.20431i −0.120785 0.371736i
\(197\) −6.94427 −0.494759 −0.247379 0.968919i \(-0.579569\pi\)
−0.247379 + 0.968919i \(0.579569\pi\)
\(198\) 0.809017 3.21644i 0.0574943 0.228582i
\(199\) −20.9787 −1.48714 −0.743571 0.668657i \(-0.766869\pi\)
−0.743571 + 0.668657i \(0.766869\pi\)
\(200\) 0.309017 + 0.951057i 0.0218508 + 0.0672499i
\(201\) 4.92705 + 3.57971i 0.347527 + 0.252493i
\(202\) −10.8262 + 7.86572i −0.761731 + 0.553430i
\(203\) −0.145898 + 0.449028i −0.0102400 + 0.0315156i
\(204\) −1.57295 + 4.84104i −0.110128 + 0.338941i
\(205\) −2.61803 + 1.90211i −0.182851 + 0.132849i
\(206\) −9.09017 6.60440i −0.633342 0.460150i
\(207\) 0.0450850 + 0.138757i 0.00313362 + 0.00964430i
\(208\) 5.61803 0.389541
\(209\) −10.7082 + 0.726543i −0.740702 + 0.0502560i
\(210\) 1.23607 0.0852968
\(211\) −6.41641 19.7477i −0.441724 1.35949i −0.886037 0.463614i \(-0.846552\pi\)
0.444313 0.895871i \(-0.353448\pi\)
\(212\) 0.381966 + 0.277515i 0.0262335 + 0.0190598i
\(213\) 1.23607 0.898056i 0.0846940 0.0615338i
\(214\) 6.09017 18.7436i 0.416315 1.28129i
\(215\) −3.42705 + 10.5474i −0.233723 + 0.719325i
\(216\) 0.809017 0.587785i 0.0550466 0.0399937i
\(217\) 3.61803 + 2.62866i 0.245608 + 0.178445i
\(218\) 2.00000 + 6.15537i 0.135457 + 0.416894i
\(219\) 13.4164 0.906597
\(220\) 2.80902 + 1.76336i 0.189384 + 0.118885i
\(221\) 28.5967 1.92363
\(222\) 2.66312 + 8.19624i 0.178737 + 0.550095i
\(223\) −2.23607 1.62460i −0.149738 0.108791i 0.510394 0.859941i \(-0.329500\pi\)
−0.660132 + 0.751150i \(0.729500\pi\)
\(224\) −1.00000 + 0.726543i −0.0668153 + 0.0485442i
\(225\) 0.309017 0.951057i 0.0206011 0.0634038i
\(226\) 0.173762 0.534785i 0.0115585 0.0355733i
\(227\) 19.7082 14.3188i 1.30808 0.950375i 0.308080 0.951360i \(-0.400314\pi\)
1.00000 0.000985137i \(0.000313579\pi\)
\(228\) −2.61803 1.90211i −0.173384 0.125971i
\(229\) 1.61803 + 4.97980i 0.106923 + 0.329074i 0.990177 0.139820i \(-0.0446525\pi\)
−0.883254 + 0.468894i \(0.844652\pi\)
\(230\) −0.145898 −0.00962023
\(231\) 3.14590 2.62866i 0.206985 0.172953i
\(232\) −0.381966 −0.0250773
\(233\) −7.59017 23.3601i −0.497249 1.53037i −0.813423 0.581673i \(-0.802398\pi\)
0.316174 0.948701i \(-0.397602\pi\)
\(234\) −4.54508 3.30220i −0.297121 0.215871i
\(235\) 9.16312 6.65740i 0.597736 0.434281i
\(236\) 0.899187 2.76741i 0.0585321 0.180143i
\(237\) −2.19098 + 6.74315i −0.142320 + 0.438015i
\(238\) −5.09017 + 3.69822i −0.329947 + 0.239720i
\(239\) −1.00000 0.726543i −0.0646846 0.0469961i 0.554973 0.831868i \(-0.312729\pi\)
−0.619658 + 0.784872i \(0.712729\pi\)
\(240\) 0.309017 + 0.951057i 0.0199470 + 0.0613904i
\(241\) 11.8885 0.765808 0.382904 0.923788i \(-0.374924\pi\)
0.382904 + 0.923788i \(0.374924\pi\)
\(242\) 10.8992 1.48584i 0.700626 0.0955135i
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −4.42705 3.21644i −0.282834 0.205491i
\(246\) −2.61803 + 1.90211i −0.166920 + 0.121274i
\(247\) −5.61803 + 17.2905i −0.357467 + 1.10017i
\(248\) −1.11803 + 3.44095i −0.0709952 + 0.218501i
\(249\) 3.23607 2.35114i 0.205077 0.148998i
\(250\) 0.809017 + 0.587785i 0.0511667 + 0.0371748i
\(251\) 3.28115 + 10.0984i 0.207105 + 0.637402i 0.999620 + 0.0275509i \(0.00877084\pi\)
−0.792516 + 0.609851i \(0.791229\pi\)
\(252\) 1.23607 0.0778650
\(253\) −0.371323 + 0.310271i −0.0233449 + 0.0195066i
\(254\) −16.6525 −1.04487
\(255\) 1.57295 + 4.84104i 0.0985019 + 0.303158i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 11.6180 8.44100i 0.724713 0.526535i −0.163173 0.986597i \(-0.552173\pi\)
0.887887 + 0.460063i \(0.152173\pi\)
\(258\) −3.42705 + 10.5474i −0.213359 + 0.656651i
\(259\) −3.29180 + 10.1311i −0.204542 + 0.629516i
\(260\) 4.54508 3.30220i 0.281874 0.204794i
\(261\) 0.309017 + 0.224514i 0.0191277 + 0.0138971i
\(262\) −1.73607 5.34307i −0.107255 0.330096i
\(263\) 0.145898 0.00899646 0.00449823 0.999990i \(-0.498568\pi\)
0.00449823 + 0.999990i \(0.498568\pi\)
\(264\) 2.80902 + 1.76336i 0.172883 + 0.108527i
\(265\) 0.472136 0.0290031
\(266\) −1.23607 3.80423i −0.0757882 0.233252i
\(267\) 10.3262 + 7.50245i 0.631955 + 0.459143i
\(268\) −4.92705 + 3.57971i −0.300968 + 0.218666i
\(269\) 8.59017 26.4378i 0.523752 1.61194i −0.243019 0.970022i \(-0.578138\pi\)
0.766771 0.641921i \(-0.221862\pi\)
\(270\) 0.309017 0.951057i 0.0188062 0.0578795i
\(271\) 6.97214 5.06555i 0.423527 0.307710i −0.355528 0.934666i \(-0.615699\pi\)
0.779055 + 0.626955i \(0.215699\pi\)
\(272\) −4.11803 2.99193i −0.249692 0.181412i
\(273\) −2.14590 6.60440i −0.129876 0.399716i
\(274\) 11.7984 0.712766
\(275\) 3.30902 0.224514i 0.199541 0.0135387i
\(276\) −0.145898 −0.00878203
\(277\) 4.48278 + 13.7966i 0.269344 + 0.828956i 0.990661 + 0.136350i \(0.0435373\pi\)
−0.721317 + 0.692606i \(0.756463\pi\)
\(278\) −10.7082 7.77997i −0.642235 0.466611i
\(279\) 2.92705 2.12663i 0.175238 0.127318i
\(280\) −0.381966 + 1.17557i −0.0228268 + 0.0702538i
\(281\) −5.09017 + 15.6659i −0.303654 + 0.934551i 0.676522 + 0.736422i \(0.263486\pi\)
−0.980176 + 0.198129i \(0.936514\pi\)
\(282\) 9.16312 6.65740i 0.545656 0.396442i
\(283\) 5.39919 + 3.92274i 0.320948 + 0.233183i 0.736580 0.676350i \(-0.236439\pi\)
−0.415632 + 0.909533i \(0.636439\pi\)
\(284\) 0.472136 + 1.45309i 0.0280161 + 0.0862247i
\(285\) −3.23607 −0.191688
\(286\) 4.54508 18.0701i 0.268757 1.06851i
\(287\) −4.00000 −0.236113
\(288\) 0.309017 + 0.951057i 0.0182090 + 0.0560415i
\(289\) −7.20820 5.23707i −0.424012 0.308063i
\(290\) −0.309017 + 0.224514i −0.0181461 + 0.0131839i
\(291\) 3.90983 12.0332i 0.229198 0.705400i
\(292\) −4.14590 + 12.7598i −0.242620 + 0.746709i
\(293\) 16.1803 11.7557i 0.945266 0.686776i −0.00441682 0.999990i \(-0.501406\pi\)
0.949682 + 0.313215i \(0.101406\pi\)
\(294\) −4.42705 3.21644i −0.258191 0.187587i
\(295\) −0.899187 2.76741i −0.0523527 0.161125i
\(296\) −8.61803 −0.500913
\(297\) −1.23607 3.07768i −0.0717239 0.178585i
\(298\) −5.38197 −0.311769
\(299\) 0.253289 + 0.779543i 0.0146481 + 0.0450821i
\(300\) 0.809017 + 0.587785i 0.0467086 + 0.0339358i
\(301\) −11.0902 + 8.05748i −0.639227 + 0.464425i
\(302\) 0.944272 2.90617i 0.0543367 0.167231i
\(303\) −4.13525 + 12.7270i −0.237564 + 0.731147i
\(304\) 2.61803 1.90211i 0.150155 0.109094i
\(305\) 0 0
\(306\) 1.57295 + 4.84104i 0.0899195 + 0.276744i
\(307\) 22.4508 1.28134 0.640669 0.767817i \(-0.278657\pi\)
0.640669 + 0.767817i \(0.278657\pi\)
\(308\) 1.52786 + 3.80423i 0.0870581 + 0.216766i
\(309\) −11.2361 −0.639198
\(310\) 1.11803 + 3.44095i 0.0635001 + 0.195433i
\(311\) −3.85410 2.80017i −0.218546 0.158783i 0.473126 0.880995i \(-0.343126\pi\)
−0.691672 + 0.722212i \(0.743126\pi\)
\(312\) 4.54508 3.30220i 0.257315 0.186950i
\(313\) −0.145898 + 0.449028i −0.00824664 + 0.0253806i −0.955095 0.296299i \(-0.904247\pi\)
0.946849 + 0.321680i \(0.104247\pi\)
\(314\) 7.50000 23.0826i 0.423249 1.30263i
\(315\) 1.00000 0.726543i 0.0563436 0.0409360i
\(316\) −5.73607 4.16750i −0.322679 0.234440i
\(317\) −0.180340 0.555029i −0.0101289 0.0311735i 0.945864 0.324562i \(-0.105217\pi\)
−0.955993 + 0.293389i \(0.905217\pi\)
\(318\) 0.472136 0.0264761
\(319\) −0.309017 + 1.22857i −0.0173016 + 0.0687868i
\(320\) −1.00000 −0.0559017
\(321\) −6.09017 18.7436i −0.339920 1.04617i
\(322\) −0.145898 0.106001i −0.00813058 0.00590721i
\(323\) 13.3262 9.68208i 0.741492 0.538725i
\(324\) 0.309017 0.951057i 0.0171676 0.0528365i
\(325\) 1.73607 5.34307i 0.0962997 0.296380i
\(326\) 4.73607 3.44095i 0.262307 0.190577i
\(327\) 5.23607 + 3.80423i 0.289555 + 0.210374i
\(328\) −1.00000 3.07768i −0.0552158 0.169937i
\(329\) 14.0000 0.771845
\(330\) 3.30902 0.224514i 0.182155 0.0123591i
\(331\) 4.76393 0.261849 0.130925 0.991392i \(-0.458205\pi\)
0.130925 + 0.991392i \(0.458205\pi\)
\(332\) 1.23607 + 3.80423i 0.0678380 + 0.208784i
\(333\) 6.97214 + 5.06555i 0.382071 + 0.277591i
\(334\) −16.3992 + 11.9147i −0.897324 + 0.651944i
\(335\) −1.88197 + 5.79210i −0.102823 + 0.316456i
\(336\) −0.381966 + 1.17557i −0.0208380 + 0.0641326i
\(337\) 8.70820 6.32688i 0.474366 0.344647i −0.324774 0.945792i \(-0.605288\pi\)
0.799140 + 0.601144i \(0.205288\pi\)
\(338\) −15.0172 10.9106i −0.816829 0.593461i
\(339\) −0.173762 0.534785i −0.00943746 0.0290455i
\(340\) −5.09017 −0.276053
\(341\) 10.1631 + 6.37988i 0.550364 + 0.345490i
\(342\) −3.23607 −0.174987
\(343\) −4.76393 14.6619i −0.257228 0.791667i
\(344\) −8.97214 6.51864i −0.483745 0.351461i
\(345\) −0.118034 + 0.0857567i −0.00635474 + 0.00461699i
\(346\) −5.70820 + 17.5680i −0.306875 + 0.944464i
\(347\) 0.0344419 0.106001i 0.00184894 0.00569044i −0.950128 0.311861i \(-0.899048\pi\)
0.951977 + 0.306170i \(0.0990477\pi\)
\(348\) −0.309017 + 0.224514i −0.0165650 + 0.0120352i
\(349\) −12.4721 9.06154i −0.667618 0.485053i 0.201609 0.979466i \(-0.435383\pi\)
−0.869227 + 0.494413i \(0.835383\pi\)
\(350\) 0.381966 + 1.17557i 0.0204169 + 0.0628369i
\(351\) −5.61803 −0.299868
\(352\) −2.54508 + 2.12663i −0.135653 + 0.113350i
\(353\) 21.3820 1.13805 0.569024 0.822321i \(-0.307321\pi\)
0.569024 + 0.822321i \(0.307321\pi\)
\(354\) −0.899187 2.76741i −0.0477912 0.147086i
\(355\) 1.23607 + 0.898056i 0.0656037 + 0.0476639i
\(356\) −10.3262 + 7.50245i −0.547290 + 0.397629i
\(357\) −1.94427 + 5.98385i −0.102902 + 0.316699i
\(358\) 7.68034 23.6377i 0.405919 1.24929i
\(359\) −8.23607 + 5.98385i −0.434683 + 0.315816i −0.783519 0.621368i \(-0.786577\pi\)
0.348836 + 0.937184i \(0.386577\pi\)
\(360\) 0.809017 + 0.587785i 0.0426389 + 0.0309790i
\(361\) −2.63525 8.11048i −0.138698 0.426867i
\(362\) −13.8885 −0.729966
\(363\) 7.94427 7.60845i 0.416966 0.399340i
\(364\) 6.94427 0.363979
\(365\) 4.14590 + 12.7598i 0.217006 + 0.667876i
\(366\) 0 0
\(367\) 25.2705 18.3601i 1.31911 0.958389i 0.319167 0.947698i \(-0.396597\pi\)
0.999943 0.0106909i \(-0.00340310\pi\)
\(368\) 0.0450850 0.138757i 0.00235022 0.00723322i
\(369\) −1.00000 + 3.07768i −0.0520579 + 0.160218i
\(370\) −6.97214 + 5.06555i −0.362464 + 0.263346i
\(371\) 0.472136 + 0.343027i 0.0245121 + 0.0178091i
\(372\) 1.11803 + 3.44095i 0.0579674 + 0.178405i
\(373\) −20.4721 −1.06001 −0.530004 0.847995i \(-0.677809\pi\)
−0.530004 + 0.847995i \(0.677809\pi\)
\(374\) −12.9549 + 10.8249i −0.669883 + 0.559742i
\(375\) 1.00000 0.0516398
\(376\) 3.50000 + 10.7719i 0.180499 + 0.555518i
\(377\) 1.73607 + 1.26133i 0.0894120 + 0.0649617i
\(378\) 1.00000 0.726543i 0.0514344 0.0373693i
\(379\) 10.0000 30.7768i 0.513665 1.58090i −0.272032 0.962288i \(-0.587696\pi\)
0.785697 0.618612i \(-0.212304\pi\)
\(380\) 1.00000 3.07768i 0.0512989 0.157882i
\(381\) −13.4721 + 9.78808i −0.690198 + 0.501459i
\(382\) −3.85410 2.80017i −0.197193 0.143269i
\(383\) 4.73607 + 14.5761i 0.242002 + 0.744805i 0.996115 + 0.0880606i \(0.0280669\pi\)
−0.754113 + 0.656744i \(0.771933\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 3.47214 + 2.17963i 0.176956 + 0.111084i
\(386\) −3.05573 −0.155532
\(387\) 3.42705 + 10.5474i 0.174207 + 0.536153i
\(388\) 10.2361 + 7.43694i 0.519658 + 0.377553i
\(389\) −0.118034 + 0.0857567i −0.00598456 + 0.00434804i −0.590774 0.806837i \(-0.701177\pi\)
0.584789 + 0.811185i \(0.301177\pi\)
\(390\) 1.73607 5.34307i 0.0879092 0.270557i
\(391\) 0.229490 0.706298i 0.0116058 0.0357190i
\(392\) 4.42705 3.21644i 0.223600 0.162455i
\(393\) −4.54508 3.30220i −0.229269 0.166574i
\(394\) −2.14590 6.60440i −0.108109 0.332725i
\(395\) −7.09017 −0.356745
\(396\) 3.30902 0.224514i 0.166284 0.0112823i
\(397\) 26.7984 1.34497 0.672486 0.740110i \(-0.265227\pi\)
0.672486 + 0.740110i \(0.265227\pi\)
\(398\) −6.48278 19.9519i −0.324952 1.00010i
\(399\) −3.23607 2.35114i −0.162006 0.117704i
\(400\) −0.809017 + 0.587785i −0.0404508 + 0.0293893i
\(401\) −11.1459 + 34.3035i −0.556600 + 1.71304i 0.135082 + 0.990834i \(0.456870\pi\)
−0.691681 + 0.722203i \(0.743130\pi\)
\(402\) −1.88197 + 5.79210i −0.0938639 + 0.288883i
\(403\) 16.4443 11.9475i 0.819148 0.595146i
\(404\) −10.8262 7.86572i −0.538625 0.391334i
\(405\) −0.309017 0.951057i −0.0153552 0.0472584i
\(406\) −0.472136 −0.0234317
\(407\) −6.97214 + 27.7194i −0.345596 + 1.37400i
\(408\) −5.09017 −0.252001
\(409\) −10.5000 32.3157i −0.519192 1.59791i −0.775524 0.631319i \(-0.782514\pi\)
0.256332 0.966589i \(-0.417486\pi\)
\(410\) −2.61803 1.90211i −0.129295 0.0939387i
\(411\) 9.54508 6.93491i 0.470824 0.342074i
\(412\) 3.47214 10.6861i 0.171060 0.526468i
\(413\) 1.11146 3.42071i 0.0546912 0.168322i
\(414\) −0.118034 + 0.0857567i −0.00580105 + 0.00421471i
\(415\) 3.23607 + 2.35114i 0.158852 + 0.115413i
\(416\) 1.73607 + 5.34307i 0.0851177 + 0.261965i
\(417\) −13.2361 −0.648173
\(418\) −4.00000 9.95959i −0.195646 0.487140i
\(419\) 16.1459 0.788779 0.394389 0.918943i \(-0.370956\pi\)
0.394389 + 0.918943i \(0.370956\pi\)
\(420\) 0.381966 + 1.17557i 0.0186380 + 0.0573620i
\(421\) −5.23607 3.80423i −0.255190 0.185407i 0.452834 0.891595i \(-0.350413\pi\)
−0.708024 + 0.706188i \(0.750413\pi\)
\(422\) 16.7984 12.2047i 0.817732 0.594117i
\(423\) 3.50000 10.7719i 0.170176 0.523747i
\(424\) −0.145898 + 0.449028i −0.00708543 + 0.0218067i
\(425\) −4.11803 + 2.99193i −0.199754 + 0.145130i
\(426\) 1.23607 + 0.898056i 0.0598877 + 0.0435110i
\(427\) 0 0
\(428\) 19.7082 0.952632
\(429\) −6.94427 17.2905i −0.335273 0.834795i
\(430\) −11.0902 −0.534815
\(431\) −6.90983 21.2663i −0.332835 1.02436i −0.967779 0.251802i \(-0.918977\pi\)
0.634944 0.772558i \(-0.281023\pi\)
\(432\) 0.809017 + 0.587785i 0.0389238 + 0.0282798i
\(433\) −24.9443 + 18.1231i −1.19875 + 0.870939i −0.994161 0.107910i \(-0.965584\pi\)
−0.204584 + 0.978849i \(0.565584\pi\)
\(434\) −1.38197 + 4.25325i −0.0663365 + 0.204163i
\(435\) −0.118034 + 0.363271i −0.00565930 + 0.0174175i
\(436\) −5.23607 + 3.80423i −0.250762 + 0.182189i
\(437\) 0.381966 + 0.277515i 0.0182719 + 0.0132753i
\(438\) 4.14590 + 12.7598i 0.198099 + 0.609685i
\(439\) 17.3262 0.826936 0.413468 0.910519i \(-0.364317\pi\)
0.413468 + 0.910519i \(0.364317\pi\)
\(440\) −0.809017 + 3.21644i −0.0385684 + 0.153338i
\(441\) −5.47214 −0.260578
\(442\) 8.83688 + 27.1971i 0.420328 + 1.29364i
\(443\) −10.2361 7.43694i −0.486330 0.353340i 0.317441 0.948278i \(-0.397176\pi\)
−0.803771 + 0.594938i \(0.797176\pi\)
\(444\) −6.97214 + 5.06555i −0.330883 + 0.240401i
\(445\) −3.94427 + 12.1392i −0.186976 + 0.575454i
\(446\) 0.854102 2.62866i 0.0404429 0.124470i
\(447\) −4.35410 + 3.16344i −0.205942 + 0.149626i
\(448\) −1.00000 0.726543i −0.0472456 0.0343259i
\(449\) 9.00000 + 27.6992i 0.424736 + 1.30720i 0.903247 + 0.429122i \(0.141177\pi\)
−0.478510 + 0.878082i \(0.658823\pi\)
\(450\) 1.00000 0.0471405
\(451\) −10.7082 + 0.726543i −0.504230 + 0.0342116i
\(452\) 0.562306 0.0264486
\(453\) −0.944272 2.90617i −0.0443658 0.136544i
\(454\) 19.7082 + 14.3188i 0.924952 + 0.672017i
\(455\) 5.61803 4.08174i 0.263377 0.191355i
\(456\) 1.00000 3.07768i 0.0468293 0.144126i
\(457\) −8.23607 + 25.3480i −0.385267 + 1.18573i 0.551019 + 0.834492i \(0.314239\pi\)
−0.936286 + 0.351237i \(0.885761\pi\)
\(458\) −4.23607 + 3.07768i −0.197938 + 0.143811i
\(459\) 4.11803 + 2.99193i 0.192213 + 0.139651i
\(460\) −0.0450850 0.138757i −0.00210210 0.00646959i
\(461\) −28.2148 −1.31409 −0.657047 0.753850i \(-0.728195\pi\)
−0.657047 + 0.753850i \(0.728195\pi\)
\(462\) 3.47214 + 2.17963i 0.161538 + 0.101405i
\(463\) −23.8885 −1.11019 −0.555097 0.831785i \(-0.687319\pi\)
−0.555097 + 0.831785i \(0.687319\pi\)
\(464\) −0.118034 0.363271i −0.00547959 0.0168644i
\(465\) 2.92705 + 2.12663i 0.135739 + 0.0986200i
\(466\) 19.8713 14.4374i 0.920521 0.668798i
\(467\) −11.9098 + 36.6547i −0.551121 + 1.69618i 0.154852 + 0.987938i \(0.450510\pi\)
−0.705973 + 0.708239i \(0.749490\pi\)
\(468\) 1.73607 5.34307i 0.0802498 0.246983i
\(469\) −6.09017 + 4.42477i −0.281218 + 0.204317i
\(470\) 9.16312 + 6.65740i 0.422663 + 0.307083i
\(471\) −7.50000 23.0826i −0.345582 1.06359i
\(472\) 2.90983 0.133936
\(473\) −28.2254 + 23.5847i −1.29781 + 1.08442i
\(474\) −7.09017 −0.325662
\(475\) −1.00000 3.07768i −0.0458831 0.141214i
\(476\) −5.09017 3.69822i −0.233308 0.169508i
\(477\) 0.381966 0.277515i 0.0174890 0.0127065i
\(478\) 0.381966 1.17557i 0.0174707 0.0537693i
\(479\) 5.32624 16.3925i 0.243362 0.748991i −0.752540 0.658547i \(-0.771171\pi\)
0.995902 0.0904442i \(-0.0288287\pi\)
\(480\) −0.809017 + 0.587785i −0.0369264 + 0.0268286i
\(481\) 39.1697 + 28.4585i 1.78598 + 1.29759i
\(482\) 3.67376 + 11.3067i 0.167335 + 0.515005i
\(483\) −0.180340 −0.00820575
\(484\) 4.78115 + 9.90659i 0.217325 + 0.450300i
\(485\) 12.6525 0.574519
\(486\) −0.309017 0.951057i −0.0140173 0.0431408i
\(487\) 12.4721 + 9.06154i 0.565166 + 0.410617i 0.833346 0.552751i \(-0.186422\pi\)
−0.268180 + 0.963369i \(0.586422\pi\)
\(488\) 0 0
\(489\) 1.80902 5.56758i 0.0818066 0.251775i
\(490\) 1.69098 5.20431i 0.0763908 0.235107i
\(491\) 0.836881 0.608030i 0.0377679 0.0274400i −0.568741 0.822517i \(-0.692569\pi\)
0.606509 + 0.795077i \(0.292569\pi\)
\(492\) −2.61803 1.90211i −0.118030 0.0857539i
\(493\) −0.600813 1.84911i −0.0270593 0.0832798i
\(494\) −18.1803 −0.817972
\(495\) 2.54508 2.12663i 0.114393 0.0955848i
\(496\) −3.61803 −0.162455
\(497\) 0.583592 + 1.79611i 0.0261777 + 0.0805666i
\(498\) 3.23607 + 2.35114i 0.145012 + 0.105357i
\(499\) 19.0344 13.8293i 0.852099 0.619086i −0.0736252 0.997286i \(-0.523457\pi\)
0.925724 + 0.378200i \(0.123457\pi\)
\(500\) −0.309017 + 0.951057i −0.0138197 + 0.0425325i
\(501\) −6.26393 + 19.2784i −0.279852 + 0.861295i
\(502\) −8.59017 + 6.24112i −0.383398 + 0.278555i
\(503\) 7.01722 + 5.09831i 0.312882 + 0.227322i 0.733132 0.680086i \(-0.238058\pi\)
−0.420250 + 0.907408i \(0.638058\pi\)
\(504\) 0.381966 + 1.17557i 0.0170141 + 0.0523641i
\(505\) −13.3820 −0.595490
\(506\) −0.409830 0.257270i −0.0182192 0.0114371i
\(507\) −18.5623 −0.824381
\(508\) −5.14590 15.8374i −0.228312 0.702673i
\(509\) 12.7812 + 9.28605i 0.566515 + 0.411597i 0.833837 0.552010i \(-0.186139\pi\)
−0.267323 + 0.963607i \(0.586139\pi\)
\(510\) −4.11803 + 2.99193i −0.182350 + 0.132485i
\(511\) −5.12461 + 15.7719i −0.226699 + 0.697709i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) −2.61803 + 1.90211i −0.115589 + 0.0839803i
\(514\) 11.6180 + 8.44100i 0.512450 + 0.372316i
\(515\) −3.47214 10.6861i −0.153001 0.470887i
\(516\) −11.0902 −0.488218
\(517\) 37.4787 2.54290i 1.64831 0.111837i
\(518\) −10.6525 −0.468043
\(519\) 5.70820 + 17.5680i 0.250562 + 0.771152i
\(520\) 4.54508 + 3.30220i 0.199315 + 0.144811i
\(521\) −34.2705 + 24.8990i −1.50142 + 1.09084i −0.531606 + 0.846992i \(0.678411\pi\)
−0.969812 + 0.243852i \(0.921589\pi\)
\(522\) −0.118034 + 0.363271i −0.00516621 + 0.0159000i
\(523\) −4.58359 + 14.1068i −0.200426 + 0.616849i 0.799444 + 0.600741i \(0.205128\pi\)
−0.999870 + 0.0161084i \(0.994872\pi\)
\(524\) 4.54508 3.30220i 0.198553 0.144257i
\(525\) 1.00000 + 0.726543i 0.0436436 + 0.0317089i
\(526\) 0.0450850 + 0.138757i 0.00196580 + 0.00605010i
\(527\) −18.4164 −0.802231
\(528\) −0.809017 + 3.21644i −0.0352079 + 0.139978i
\(529\) −22.9787 −0.999075
\(530\) 0.145898 + 0.449028i 0.00633741 + 0.0195045i
\(531\) −2.35410 1.71036i −0.102159 0.0742231i
\(532\) 3.23607 2.35114i 0.140301 0.101935i
\(533\) −5.61803 + 17.2905i −0.243344 + 0.748936i
\(534\) −3.94427 + 12.1392i −0.170685 + 0.525315i
\(535\) 15.9443 11.5842i 0.689331 0.500828i
\(536\) −4.92705 3.57971i −0.212816 0.154620i
\(537\) −7.68034 23.6377i −0.331431 1.02004i
\(538\) 27.7984 1.19847
\(539\) −6.76393 16.8415i −0.291343 0.725415i
\(540\) 1.00000 0.0430331
\(541\) −9.90983 30.4993i −0.426057 1.31127i −0.901979 0.431781i \(-0.857885\pi\)
0.475922 0.879488i \(-0.342115\pi\)
\(542\) 6.97214 + 5.06555i 0.299479 + 0.217584i
\(543\) −11.2361 + 8.16348i −0.482186 + 0.350329i
\(544\) 1.57295 4.84104i 0.0674396 0.207558i
\(545\) −2.00000 + 6.15537i −0.0856706 + 0.263667i
\(546\) 5.61803 4.08174i 0.240430 0.174682i
\(547\) −15.1074 10.9762i −0.645945 0.469307i 0.215942 0.976406i \(-0.430718\pi\)
−0.861888 + 0.507099i \(0.830718\pi\)
\(548\) 3.64590 + 11.2209i 0.155745 + 0.479334i
\(549\) 0 0
\(550\) 1.23607 + 3.07768i 0.0527061 + 0.131233i
\(551\) 1.23607 0.0526583
\(552\) −0.0450850 0.138757i −0.00191894 0.00590590i
\(553\) −7.09017 5.15131i −0.301505 0.219056i
\(554\) −11.7361 + 8.52675i −0.498618 + 0.362267i
\(555\) −2.66312 + 8.19624i −0.113043 + 0.347911i
\(556\) 4.09017 12.5882i 0.173462 0.533861i
\(557\) −4.14590 + 3.01217i −0.175667 + 0.127630i −0.672145 0.740420i \(-0.734627\pi\)
0.496477 + 0.868050i \(0.334627\pi\)
\(558\) 2.92705 + 2.12663i 0.123912 + 0.0900273i
\(559\) 19.2533 + 59.2555i 0.814327 + 2.50624i
\(560\) −1.23607 −0.0522334
\(561\) −4.11803 + 16.3722i −0.173864 + 0.691236i
\(562\) −16.4721 −0.694835
\(563\) 10.7984 + 33.2340i 0.455097 + 1.40065i 0.871021 + 0.491246i \(0.163458\pi\)
−0.415924 + 0.909399i \(0.636542\pi\)
\(564\) 9.16312 + 6.65740i 0.385837 + 0.280327i
\(565\) 0.454915 0.330515i 0.0191384 0.0139049i
\(566\) −2.06231 + 6.34712i −0.0866852 + 0.266790i
\(567\) 0.381966 1.17557i 0.0160411 0.0493693i
\(568\) −1.23607 + 0.898056i −0.0518643 + 0.0376816i
\(569\) −1.14590 0.832544i −0.0480385 0.0349020i 0.563507 0.826111i \(-0.309452\pi\)
−0.611545 + 0.791209i \(0.709452\pi\)
\(570\) −1.00000 3.07768i −0.0418854 0.128910i
\(571\) 16.3607 0.684673 0.342337 0.939577i \(-0.388782\pi\)
0.342337 + 0.939577i \(0.388782\pi\)
\(572\) 18.5902 1.26133i 0.777294 0.0527387i
\(573\) −4.76393 −0.199016
\(574\) −1.23607 3.80423i −0.0515925 0.158785i
\(575\) −0.118034 0.0857567i −0.00492236 0.00357630i
\(576\) −0.809017 + 0.587785i −0.0337090 + 0.0244911i
\(577\) 10.7984 33.2340i 0.449542 1.38355i −0.427883 0.903834i \(-0.640740\pi\)
0.877425 0.479714i \(-0.159260\pi\)
\(578\) 2.75329 8.47375i 0.114522 0.352462i
\(579\) −2.47214 + 1.79611i −0.102738 + 0.0746439i
\(580\) −0.309017 0.224514i −0.0128312 0.00932244i
\(581\) 1.52786 + 4.70228i 0.0633865 + 0.195084i
\(582\) 12.6525 0.524462
\(583\) 1.32624 + 0.832544i 0.0549272 + 0.0344804i
\(584\) −13.4164 −0.555175
\(585\) −1.73607 5.34307i −0.0717776 0.220909i
\(586\) 16.1803 + 11.7557i 0.668404 + 0.485624i
\(587\) 32.1246 23.3399i 1.32592 0.963341i 0.326087 0.945340i \(-0.394270\pi\)
0.999838 0.0180007i \(-0.00573013\pi\)
\(588\) 1.69098 5.20431i 0.0697350 0.214622i
\(589\) 3.61803 11.1352i 0.149078 0.458816i
\(590\) 2.35410 1.71036i 0.0969168 0.0704142i
\(591\) −5.61803 4.08174i −0.231095 0.167900i
\(592\) −2.66312 8.19624i −0.109454 0.336863i
\(593\) −33.3262 −1.36854 −0.684272 0.729227i \(-0.739880\pi\)
−0.684272 + 0.729227i \(0.739880\pi\)
\(594\) 2.54508 2.12663i 0.104426 0.0872566i
\(595\) −6.29180 −0.257938
\(596\) −1.66312 5.11855i −0.0681240 0.209664i
\(597\) −16.9721 12.3310i −0.694623 0.504673i
\(598\) −0.663119 + 0.481784i −0.0271170 + 0.0197016i
\(599\) −1.29180 + 3.97574i −0.0527814 + 0.162444i −0.973973 0.226666i \(-0.927217\pi\)
0.921191 + 0.389110i \(0.127217\pi\)
\(600\) −0.309017 + 0.951057i −0.0126156 + 0.0388267i
\(601\) 0.854102 0.620541i 0.0348395 0.0253124i −0.570229 0.821486i \(-0.693146\pi\)
0.605069 + 0.796173i \(0.293146\pi\)
\(602\) −11.0902 8.05748i −0.452002 0.328398i
\(603\) 1.88197 + 5.79210i 0.0766396 + 0.235872i
\(604\) 3.05573 0.124336
\(605\) 9.69098 + 5.20431i 0.393994 + 0.211585i
\(606\) −13.3820 −0.543605
\(607\) 1.38197 + 4.25325i 0.0560923 + 0.172634i 0.975178 0.221425i \(-0.0710706\pi\)
−0.919085 + 0.394059i \(0.871071\pi\)
\(608\) 2.61803 + 1.90211i 0.106175 + 0.0771409i
\(609\) −0.381966 + 0.277515i −0.0154780 + 0.0112455i
\(610\) 0 0
\(611\) 19.6631 60.5169i 0.795485 2.44825i
\(612\) −4.11803 + 2.99193i −0.166462 + 0.120941i
\(613\) −4.85410 3.52671i −0.196055 0.142443i 0.485427 0.874277i \(-0.338664\pi\)
−0.681482 + 0.731835i \(0.738664\pi\)
\(614\) 6.93769 + 21.3520i 0.279983 + 0.861698i
\(615\) −3.23607 −0.130491
\(616\) −3.14590 + 2.62866i −0.126752 + 0.105912i
\(617\) −18.3607 −0.739173 −0.369587 0.929196i \(-0.620501\pi\)
−0.369587 + 0.929196i \(0.620501\pi\)
\(618\) −3.47214 10.6861i −0.139670 0.429859i
\(619\) −14.9443 10.8576i −0.600661 0.436406i 0.245452 0.969409i \(-0.421063\pi\)
−0.846113 + 0.533003i \(0.821063\pi\)
\(620\) −2.92705 + 2.12663i −0.117553 + 0.0854074i
\(621\) −0.0450850 + 0.138757i −0.00180920 + 0.00556814i
\(622\) 1.47214 4.53077i 0.0590273 0.181667i
\(623\) −12.7639 + 9.27354i −0.511376 + 0.371537i
\(624\) 4.54508 + 3.30220i 0.181949 + 0.132194i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −0.472136 −0.0188703
\(627\) −9.09017 5.70634i −0.363026 0.227889i
\(628\) 24.2705 0.968499
\(629\) −13.5557 41.7202i −0.540502 1.66349i
\(630\) 1.00000 + 0.726543i 0.0398410 + 0.0289461i
\(631\) 17.2533 12.5352i 0.686843 0.499020i −0.188778 0.982020i \(-0.560453\pi\)
0.875621 + 0.482999i \(0.160453\pi\)
\(632\) 2.19098 6.74315i 0.0871526 0.268228i
\(633\) 6.41641 19.7477i 0.255029 0.784900i
\(634\) 0.472136 0.343027i 0.0187509 0.0136233i
\(635\) −13.4721 9.78808i −0.534625 0.388428i
\(636\) 0.145898 + 0.449028i 0.00578523 + 0.0178051i
\(637\) −30.7426 −1.21807
\(638\) −1.26393 + 0.0857567i −0.0500395 + 0.00339514i
\(639\) 1.52786 0.0604414
\(640\) −0.309017 0.951057i −0.0122150 0.0375938i
\(641\) 8.23607 + 5.98385i 0.325305 + 0.236348i 0.738436 0.674324i \(-0.235565\pi\)
−0.413131 + 0.910672i \(0.635565\pi\)
\(642\) 15.9443 11.5842i 0.629270 0.457192i
\(643\) 6.11803 18.8294i 0.241272 0.742558i −0.754956 0.655776i \(-0.772342\pi\)
0.996227 0.0867821i \(-0.0276584\pi\)
\(644\) 0.0557281 0.171513i 0.00219599 0.00675858i
\(645\) −8.97214 + 6.51864i −0.353278 + 0.256671i
\(646\) 13.3262 + 9.68208i 0.524314 + 0.380936i
\(647\) −4.51722 13.9026i −0.177590 0.546567i 0.822152 0.569268i \(-0.192773\pi\)
−0.999742 + 0.0227013i \(0.992773\pi\)
\(648\) 1.00000 0.0392837
\(649\) 2.35410 9.35930i 0.0924066 0.367385i
\(650\) 5.61803 0.220357
\(651\) 1.38197 + 4.25325i 0.0541635 + 0.166698i
\(652\) 4.73607 + 3.44095i 0.185479 + 0.134758i
\(653\) 34.4164 25.0050i 1.34682 0.978521i 0.347655 0.937623i \(-0.386978\pi\)
0.999163 0.0408980i \(-0.0130219\pi\)
\(654\) −2.00000 + 6.15537i −0.0782062 + 0.240694i
\(655\) 1.73607 5.34307i 0.0678338 0.208771i
\(656\) 2.61803 1.90211i 0.102217 0.0742650i
\(657\) 10.8541 + 7.88597i 0.423459 + 0.307661i
\(658\) 4.32624 + 13.3148i 0.168654 + 0.519065i
\(659\) 11.4164 0.444720 0.222360 0.974965i \(-0.428624\pi\)
0.222360 + 0.974965i \(0.428624\pi\)
\(660\) 1.23607 + 3.07768i 0.0481139 + 0.119799i
\(661\) −36.3607 −1.41427 −0.707133 0.707080i \(-0.750012\pi\)
−0.707133 + 0.707080i \(0.750012\pi\)
\(662\) 1.47214 + 4.53077i 0.0572162 + 0.176093i
\(663\) 23.1353 + 16.8087i 0.898499 + 0.652798i
\(664\) −3.23607 + 2.35114i −0.125584 + 0.0912420i
\(665\) 1.23607 3.80423i 0.0479327 0.147522i
\(666\) −2.66312 + 8.19624i −0.103194 + 0.317598i
\(667\) 0.0450850 0.0327561i 0.00174570 0.00126832i
\(668\) −16.3992 11.9147i −0.634504 0.460994i
\(669\) −0.854102 2.62866i −0.0330215 0.101630i
\(670\) −6.09017 −0.235284
\(671\) 0 0
\(672\) −1.23607 −0.0476824
\(673\) −0.708204 2.17963i −0.0272993 0.0840185i 0.936479 0.350725i \(-0.114065\pi\)
−0.963778 + 0.266706i \(0.914065\pi\)
\(674\) 8.70820 + 6.32688i 0.335427 + 0.243702i
\(675\) 0.809017 0.587785i 0.0311391 0.0226239i
\(676\) 5.73607 17.6538i 0.220618 0.678992i
\(677\) 7.03444 21.6498i 0.270356 0.832069i −0.720055 0.693917i \(-0.755884\pi\)
0.990411 0.138152i \(-0.0441163\pi\)
\(678\) 0.454915 0.330515i 0.0174709 0.0126934i
\(679\) 12.6525 + 9.19256i 0.485557 + 0.352778i
\(680\) −1.57295 4.84104i −0.0603198 0.185645i
\(681\) 24.3607 0.933503
\(682\) −2.92705 + 11.6372i −0.112083 + 0.445611i
\(683\) −19.1246 −0.731783 −0.365891 0.930658i \(-0.619236\pi\)
−0.365891 + 0.930658i \(0.619236\pi\)
\(684\) −1.00000 3.07768i −0.0382360 0.117678i
\(685\) 9.54508 + 6.93491i 0.364699 + 0.264969i
\(686\) 12.4721 9.06154i 0.476188 0.345971i
\(687\) −1.61803 + 4.97980i −0.0617318 + 0.189991i
\(688\) 3.42705 10.5474i 0.130655 0.402115i
\(689\) 2.14590 1.55909i 0.0817522 0.0593965i
\(690\) −0.118034 0.0857567i −0.00449348 0.00326470i
\(691\) 3.29180 + 10.1311i 0.125226 + 0.385405i 0.993942 0.109904i \(-0.0350545\pi\)
−0.868716 + 0.495310i \(0.835054\pi\)
\(692\) −18.4721 −0.702205
\(693\) 4.09017 0.277515i 0.155373 0.0105419i
\(694\) 0.111456 0.00423082
\(695\) −4.09017 12.5882i −0.155149 0.477499i
\(696\) −0.309017 0.224514i −0.0117133 0.00851018i
\(697\) 13.3262 9.68208i 0.504767 0.366735i
\(698\) 4.76393 14.6619i 0.180317 0.554960i
\(699\) 7.59017 23.3601i 0.287087 0.883562i
\(700\) −1.00000 + 0.726543i −0.0377964 + 0.0274607i
\(701\) 10.0902 + 7.33094i 0.381100 + 0.276886i 0.761799 0.647814i \(-0.224316\pi\)
−0.380698 + 0.924699i \(0.624316\pi\)
\(702\) −1.73607 5.34307i −0.0655237 0.201661i
\(703\) 27.8885 1.05184
\(704\) −2.80902 1.76336i −0.105869 0.0664590i
\(705\) 11.3262 0.426571
\(706\) 6.60739 + 20.3355i 0.248672 + 0.765335i
\(707\) −13.3820 9.72257i −0.503281 0.365655i
\(708\) 2.35410 1.71036i 0.0884726 0.0642791i
\(709\) −11.5623 + 35.5851i −0.434232 + 1.33643i 0.459641 + 0.888105i \(0.347978\pi\)
−0.893872 + 0.448322i \(0.852022\pi\)
\(710\) −0.472136 + 1.45309i −0.0177189 + 0.0545333i
\(711\) −5.73607 + 4.16750i −0.215119 + 0.156293i
\(712\) −10.3262 7.50245i −0.386992 0.281166i
\(713\) −0.163119 0.502029i −0.00610885 0.0188011i
\(714\) −6.29180 −0.235465
\(715\) 14.2984 11.9475i 0.534729 0.446810i
\(716\) 24.8541 0.928841
\(717\) −0.381966 1.17557i −0.0142648 0.0439025i
\(718\) −8.23607 5.98385i −0.307367 0.223315i
\(719\) −7.56231 + 5.49434i −0.282026 + 0.204904i −0.719801 0.694181i \(-0.755767\pi\)
0.437774 + 0.899085i \(0.355767\pi\)
\(720\) −0.309017 + 0.951057i −0.0115164 + 0.0354438i
\(721\) 4.29180 13.2088i 0.159835 0.491921i
\(722\) 6.89919 5.01255i 0.256761 0.186548i
\(723\) 9.61803 + 6.98791i 0.357699 + 0.259883i
\(724\) −4.29180 13.2088i −0.159503 0.490901i
\(725\) −0.381966 −0.0141859
\(726\) 9.69098 + 5.20431i 0.359666 + 0.193150i
\(727\) −27.8197 −1.03177 −0.515887 0.856657i \(-0.672538\pi\)
−0.515887 + 0.856657i \(0.672538\pi\)
\(728\) 2.14590 + 6.60440i 0.0795323 + 0.244775i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) −10.8541 + 7.88597i −0.401728 + 0.291873i
\(731\) 17.4443 53.6879i 0.645200 1.98572i
\(732\) 0 0
\(733\) −28.8607 + 20.9685i −1.06599 + 0.774490i −0.975188 0.221379i \(-0.928944\pi\)
−0.0908057 + 0.995869i \(0.528944\pi\)
\(734\) 25.2705 + 18.3601i 0.932752 + 0.677684i
\(735\) −1.69098 5.20431i −0.0623728 0.191964i
\(736\) 0.145898 0.00537787
\(737\) −15.5000 + 12.9515i −0.570950 + 0.477075i
\(738\) −3.23607 −0.119121
\(739\) −15.1459 46.6143i −0.557151 1.71473i −0.690195 0.723624i \(-0.742475\pi\)
0.133044 0.991110i \(-0.457525\pi\)
\(740\) −6.97214 5.06555i −0.256301 0.186213i
\(741\) −14.7082 + 10.6861i −0.540319 + 0.392565i
\(742\) −0.180340 + 0.555029i −0.00662049 + 0.0203758i
\(743\) −4.26393 + 13.1230i −0.156428 + 0.481437i −0.998303 0.0582362i \(-0.981452\pi\)
0.841874 + 0.539674i \(0.181452\pi\)
\(744\) −2.92705 + 2.12663i −0.107311 + 0.0779659i
\(745\) −4.35410 3.16344i −0.159522 0.115899i
\(746\) −6.32624 19.4702i −0.231620 0.712853i
\(747\) 4.00000 0.146352
\(748\) −14.2984 8.97578i −0.522800 0.328187i
\(749\) 24.3607 0.890120
\(750\) 0.309017 + 0.951057i 0.0112837 + 0.0347277i
\(751\) −0.0278640 0.0202444i −0.00101677 0.000738729i 0.587277 0.809386i \(-0.300200\pi\)
−0.588294 + 0.808647i \(0.700200\pi\)
\(752\) −9.16312 + 6.65740i −0.334145 + 0.242770i
\(753\) −3.28115 + 10.0984i −0.119572 + 0.368004i
\(754\) −0.663119 + 2.04087i −0.0241494 + 0.0743241i
\(755\) 2.47214 1.79611i 0.0899702 0.0653672i
\(756\) 1.00000 + 0.726543i 0.0363696 + 0.0264241i
\(757\) −14.5689 44.8384i −0.529515 1.62968i −0.755211 0.655482i \(-0.772466\pi\)
0.225696 0.974198i \(-0.427534\pi\)
\(758\) 32.3607 1.17539
\(759\) −0.482779 + 0.0327561i −0.0175238 + 0.00118897i
\(760\) 3.23607 0.117385
\(761\) −3.09017 9.51057i −0.112019 0.344758i 0.879295 0.476278i \(-0.158014\pi\)
−0.991314 + 0.131520i \(0.958014\pi\)
\(762\) −13.4721 9.78808i −0.488044 0.354585i
\(763\) −6.47214 + 4.70228i −0.234307 + 0.170234i
\(764\) 1.47214 4.53077i 0.0532600 0.163917i
\(765\) −1.57295 + 4.84104i −0.0568701 + 0.175028i
\(766\) −12.3992 + 9.00854i −0.448001 + 0.325492i
\(767\) −13.2254 9.60883i −0.477542 0.346955i
\(768\) −0.309017 0.951057i −0.0111507 0.0343183i
\(769\) 31.4508 1.13415 0.567073 0.823667i \(-0.308076\pi\)
0.567073 + 0.823667i \(0.308076\pi\)
\(770\) −1.00000 + 3.97574i −0.0360375 + 0.143276i
\(771\) 14.3607 0.517187
\(772\) −0.944272 2.90617i −0.0339851 0.104595i
\(773\) 23.9443 + 17.3965i 0.861216 + 0.625710i 0.928215 0.372043i \(-0.121343\pi\)
−0.0669998 + 0.997753i \(0.521343\pi\)
\(774\) −8.97214 + 6.51864i −0.3224