Properties

Label 330.2.l
Level $330$
Weight $2$
Character orbit 330.l
Rep. character $\chi_{330}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $4$
Sturm bound $144$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 330.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(330, [\chi])\).

Total New Old
Modular forms 160 24 136
Cusp forms 128 24 104
Eisenstein series 32 0 32

Trace form

\( 24 q - 16 q^{5} + 8 q^{11} + 8 q^{15} - 24 q^{16} - 4 q^{22} + 16 q^{23} + 16 q^{26} + 16 q^{31} - 12 q^{33} - 24 q^{36} + 32 q^{37} - 8 q^{42} - 32 q^{47} - 48 q^{53} + 36 q^{55} - 16 q^{56} - 8 q^{58}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(330, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
330.2.l.a 330.l 55.e $4$ $2.635$ \(\Q(\zeta_{8})\) None 330.2.l.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+\zeta_{8}q^{3}+\zeta_{8}^{2}q^{4}+(2\zeta_{8}+\zeta_{8}^{3})q^{5}+\cdots\)
330.2.l.b 330.l 55.e $4$ $2.635$ \(\Q(\zeta_{8})\) None 330.2.l.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}-\zeta_{8}q^{3}+\zeta_{8}^{2}q^{4}+(-2\zeta_{8}+\cdots)q^{5}+\cdots\)
330.2.l.c 330.l 55.e $8$ $2.635$ 8.0.822083584.4 None 330.2.l.c \(0\) \(0\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}-\beta _{2}q^{3}+\beta _{4}q^{4}+(-1+\beta _{6}+\cdots)q^{5}+\cdots\)
330.2.l.d 330.l 55.e $8$ $2.635$ 8.0.822083584.4 None 330.2.l.c \(0\) \(0\) \(-8\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{2}+\beta _{6}q^{3}-\beta _{4}q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(330, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(330, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)