Defining parameters
Level: | \( N \) | \(=\) | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 330.l (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(330, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 24 | 136 |
Cusp forms | 128 | 24 | 104 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(330, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
330.2.l.a | $4$ | $2.635$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\zeta_{8}q^{2}+\zeta_{8}q^{3}+\zeta_{8}^{2}q^{4}+(2\zeta_{8}+\zeta_{8}^{3})q^{5}+\cdots\) |
330.2.l.b | $4$ | $2.635$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\zeta_{8}q^{2}-\zeta_{8}q^{3}+\zeta_{8}^{2}q^{4}+(-2\zeta_{8}+\cdots)q^{5}+\cdots\) |
330.2.l.c | $8$ | $2.635$ | 8.0.822083584.4 | None | \(0\) | \(0\) | \(-8\) | \(-8\) | \(q+\beta _{2}q^{2}-\beta _{2}q^{3}+\beta _{4}q^{4}+(-1+\beta _{6}+\cdots)q^{5}+\cdots\) |
330.2.l.d | $8$ | $2.635$ | 8.0.822083584.4 | None | \(0\) | \(0\) | \(-8\) | \(8\) | \(q+\beta _{6}q^{2}+\beta _{6}q^{3}-\beta _{4}q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(330, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(330, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)