Defining parameters
Level: | \( N \) | \(=\) | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 330.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(330, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 8 | 72 |
Cusp forms | 64 | 8 | 56 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(330, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
330.2.c.a | $4$ | $2.635$ | \(\Q(i, \sqrt{10})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+\beta _{2}q^{3}-q^{4}+\beta _{1}q^{5}-q^{6}+\cdots\) |
330.2.c.b | $4$ | $2.635$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{2}q^{2}-\zeta_{8}^{2}q^{3}-q^{4}+(2\zeta_{8}+\zeta_{8}^{3})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(330, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(330, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)