Defining parameters
Level: | \( N \) | \(=\) | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 330.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(330))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 5 | 75 |
Cusp forms | 65 | 5 | 60 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(1\) |
Plus space | \(+\) | \(1\) | |||
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(330))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 11 | |||||||
330.2.a.a | $1$ | $2.635$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
330.2.a.b | $1$ | $2.635$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-4q^{7}+\cdots\) | |
330.2.a.c | $1$ | $2.635$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(4\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+4q^{7}+\cdots\) | |
330.2.a.d | $1$ | $2.635$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
330.2.a.e | $1$ | $2.635$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(330))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(330)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 2}\)