Properties

Label 330.2
Level 330
Weight 2
Dimension 645
Nonzero newspaces 12
Newform subspaces 31
Sturm bound 11520
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 31 \)
Sturm bound: \(11520\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(330))\).

Total New Old
Modular forms 3200 645 2555
Cusp forms 2561 645 1916
Eisenstein series 639 0 639

Trace form

\( 645 q + q^{2} + 5 q^{3} + q^{4} + 9 q^{5} + 15 q^{6} + 48 q^{7} + q^{8} + 41 q^{9} + 13 q^{10} + 25 q^{11} + 9 q^{12} + 22 q^{13} + 16 q^{14} + 11 q^{15} + q^{16} + 50 q^{17} - 5 q^{18} + 48 q^{19}+ \cdots - 267 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(330))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
330.2.a \(\chi_{330}(1, \cdot)\) 330.2.a.a 1 1
330.2.a.b 1
330.2.a.c 1
330.2.a.d 1
330.2.a.e 1
330.2.c \(\chi_{330}(199, \cdot)\) 330.2.c.a 4 1
330.2.c.b 4
330.2.d \(\chi_{330}(131, \cdot)\) 330.2.d.a 8 1
330.2.d.b 8
330.2.f \(\chi_{330}(329, \cdot)\) 330.2.f.a 24 1
330.2.j \(\chi_{330}(23, \cdot)\) 330.2.j.a 20 2
330.2.j.b 20
330.2.l \(\chi_{330}(43, \cdot)\) 330.2.l.a 4 2
330.2.l.b 4
330.2.l.c 8
330.2.l.d 8
330.2.m \(\chi_{330}(31, \cdot)\) 330.2.m.a 4 4
330.2.m.b 4
330.2.m.c 4
330.2.m.d 4
330.2.m.e 8
330.2.m.f 8
330.2.p \(\chi_{330}(29, \cdot)\) 330.2.p.a 96 4
330.2.r \(\chi_{330}(41, \cdot)\) 330.2.r.a 32 4
330.2.r.b 32
330.2.s \(\chi_{330}(49, \cdot)\) 330.2.s.a 8 4
330.2.s.b 8
330.2.s.c 32
330.2.u \(\chi_{330}(7, \cdot)\) 330.2.u.a 48 8
330.2.u.b 48
330.2.w \(\chi_{330}(47, \cdot)\) 330.2.w.a 192 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(330))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(330)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)