Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [33,8,Mod(4,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.4");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.e (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.3087058410\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −17.1972 | − | 12.4945i | 8.34346 | − | 25.6785i | 100.077 | + | 308.005i | 190.798 | − | 138.623i | −464.324 | + | 337.351i | −503.289 | − | 1548.96i | 1286.53 | − | 3959.52i | −589.773 | − | 428.495i | −5013.22 | ||
4.2 | −12.1293 | − | 8.81245i | 8.34346 | − | 25.6785i | 29.9064 | + | 92.0423i | −3.10808 | + | 2.25815i | −327.491 | + | 237.936i | 300.631 | + | 925.246i | −144.646 | + | 445.175i | −589.773 | − | 428.495i | 57.5987 | ||
4.3 | −3.93160 | − | 2.85647i | 8.34346 | − | 25.6785i | −32.2561 | − | 99.2742i | −221.480 | + | 160.915i | −106.153 | + | 77.1248i | −146.721 | − | 451.561i | −348.978 | + | 1074.04i | −589.773 | − | 428.495i | 1330.42 | ||
4.4 | −3.24396 | − | 2.35687i | 8.34346 | − | 25.6785i | −34.5858 | − | 106.444i | 354.050 | − | 257.233i | −87.5868 | + | 63.6355i | 116.729 | + | 359.256i | −297.283 | + | 914.942i | −589.773 | − | 428.495i | −1754.79 | ||
4.5 | 7.82727 | + | 5.68684i | 8.34346 | − | 25.6785i | −10.6283 | − | 32.7104i | −100.934 | + | 73.3327i | 211.336 | − | 153.545i | −177.127 | − | 545.140i | 485.517 | − | 1494.27i | −589.773 | − | 428.495i | −1207.07 | ||
4.6 | 14.6841 | + | 10.6686i | 8.34346 | − | 25.6785i | 62.2484 | + | 191.581i | 425.412 | − | 309.080i | 396.469 | − | 288.052i | −184.854 | − | 568.921i | −411.912 | + | 1267.74i | −589.773 | − | 428.495i | 9544.22 | ||
4.7 | 16.9629 | + | 12.3242i | 8.34346 | − | 25.6785i | 96.2976 | + | 296.374i | −380.493 | + | 276.444i | 457.997 | − | 332.754i | 39.7826 | + | 122.438i | −1189.75 | + | 3661.68i | −589.773 | − | 428.495i | −9861.22 | ||
16.1 | −6.47025 | − | 19.9134i | −21.8435 | − | 15.8702i | −251.124 | + | 182.452i | −11.5844 | + | 35.6531i | −174.697 | + | 537.661i | 80.4609 | − | 58.4583i | 3089.84 | + | 2244.90i | 225.273 | + | 693.320i | 784.928 | ||
16.2 | −4.06039 | − | 12.4966i | −21.8435 | − | 15.8702i | −36.1242 | + | 26.2458i | 158.380 | − | 487.442i | −109.631 | + | 337.408i | 846.952 | − | 615.347i | −886.010 | − | 643.724i | 225.273 | + | 693.320i | −6734.46 | ||
16.3 | −2.99223 | − | 9.20914i | −21.8435 | − | 15.8702i | 27.6994 | − | 20.1248i | −60.2993 | + | 185.582i | −80.7902 | + | 248.647i | −765.654 | + | 556.280i | −1270.94 | − | 923.389i | 225.273 | + | 693.320i | 1889.48 | ||
16.4 | −0.970201 | − | 2.98597i | −21.8435 | − | 15.8702i | 95.5794 | − | 69.4425i | −100.399 | + | 308.998i | −26.1954 | + | 80.6212i | 1340.18 | − | 973.701i | −625.207 | − | 454.240i | 225.273 | + | 693.320i | 1020.07 | ||
16.5 | 0.813458 | + | 2.50357i | −21.8435 | − | 15.8702i | 97.9481 | − | 71.1634i | 78.7070 | − | 242.235i | 21.9634 | − | 67.5963i | −1135.08 | + | 824.681i | 530.435 | + | 385.384i | 225.273 | + | 693.320i | 670.476 | ||
16.6 | 2.75376 | + | 8.47521i | −21.8435 | − | 15.8702i | 39.3082 | − | 28.5591i | −42.2440 | + | 130.014i | 74.3516 | − | 228.831i | 29.1631 | − | 21.1883i | 1273.10 | + | 924.960i | 225.273 | + | 693.320i | −1218.22 | ||
16.7 | 4.95371 | + | 15.2460i | −21.8435 | − | 15.8702i | −104.346 | + | 75.8118i | 99.6953 | − | 306.831i | 133.750 | − | 411.641i | 803.319 | − | 583.645i | −12.6937 | − | 9.22251i | 225.273 | + | 693.320i | 5171.79 | ||
25.1 | −17.1972 | + | 12.4945i | 8.34346 | + | 25.6785i | 100.077 | − | 308.005i | 190.798 | + | 138.623i | −464.324 | − | 337.351i | −503.289 | + | 1548.96i | 1286.53 | + | 3959.52i | −589.773 | + | 428.495i | −5013.22 | ||
25.2 | −12.1293 | + | 8.81245i | 8.34346 | + | 25.6785i | 29.9064 | − | 92.0423i | −3.10808 | − | 2.25815i | −327.491 | − | 237.936i | 300.631 | − | 925.246i | −144.646 | − | 445.175i | −589.773 | + | 428.495i | 57.5987 | ||
25.3 | −3.93160 | + | 2.85647i | 8.34346 | + | 25.6785i | −32.2561 | + | 99.2742i | −221.480 | − | 160.915i | −106.153 | − | 77.1248i | −146.721 | + | 451.561i | −348.978 | − | 1074.04i | −589.773 | + | 428.495i | 1330.42 | ||
25.4 | −3.24396 | + | 2.35687i | 8.34346 | + | 25.6785i | −34.5858 | + | 106.444i | 354.050 | + | 257.233i | −87.5868 | − | 63.6355i | 116.729 | − | 359.256i | −297.283 | − | 914.942i | −589.773 | + | 428.495i | −1754.79 | ||
25.5 | 7.82727 | − | 5.68684i | 8.34346 | + | 25.6785i | −10.6283 | + | 32.7104i | −100.934 | − | 73.3327i | 211.336 | + | 153.545i | −177.127 | + | 545.140i | 485.517 | + | 1494.27i | −589.773 | + | 428.495i | −1207.07 | ||
25.6 | 14.6841 | − | 10.6686i | 8.34346 | + | 25.6785i | 62.2484 | − | 191.581i | 425.412 | + | 309.080i | 396.469 | + | 288.052i | −184.854 | + | 568.921i | −411.912 | − | 1267.74i | −589.773 | + | 428.495i | 9544.22 | ||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.8.e.b | ✓ | 28 |
3.b | odd | 2 | 1 | 99.8.f.b | 28 | ||
11.c | even | 5 | 1 | inner | 33.8.e.b | ✓ | 28 |
11.c | even | 5 | 1 | 363.8.a.o | 14 | ||
11.d | odd | 10 | 1 | 363.8.a.r | 14 | ||
33.h | odd | 10 | 1 | 99.8.f.b | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.8.e.b | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
33.8.e.b | ✓ | 28 | 11.c | even | 5 | 1 | inner |
99.8.f.b | 28 | 3.b | odd | 2 | 1 | ||
99.8.f.b | 28 | 33.h | odd | 10 | 1 | ||
363.8.a.o | 14 | 11.c | even | 5 | 1 | ||
363.8.a.r | 14 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{28} + 6 T_{2}^{27} + 386 T_{2}^{26} - 1216 T_{2}^{25} + 235753 T_{2}^{24} + 1933616 T_{2}^{23} + 138235563 T_{2}^{22} + 251006875 T_{2}^{21} + 44479969025 T_{2}^{20} + \cdots + 51\!\cdots\!00 \)
acting on \(S_{8}^{\mathrm{new}}(33, [\chi])\).