Properties

Label 33.8.e.b
Level $33$
Weight $8$
Character orbit 33.e
Analytic conductor $10.309$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [33,8,Mod(4,33)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("33.4"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 33.e (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3087058410\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q - 6 q^{2} - 189 q^{3} + 160 q^{4} + 773 q^{5} - 162 q^{6} + 1289 q^{7} + 2956 q^{8} - 5103 q^{9} - 10640 q^{10} + 13209 q^{11} + 45630 q^{12} + 13499 q^{13} - 3318 q^{14} - 22734 q^{15} - 113196 q^{16}+ \cdots - 6579954 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −17.1972 12.4945i 8.34346 25.6785i 100.077 + 308.005i 190.798 138.623i −464.324 + 337.351i −503.289 1548.96i 1286.53 3959.52i −589.773 428.495i −5013.22
4.2 −12.1293 8.81245i 8.34346 25.6785i 29.9064 + 92.0423i −3.10808 + 2.25815i −327.491 + 237.936i 300.631 + 925.246i −144.646 + 445.175i −589.773 428.495i 57.5987
4.3 −3.93160 2.85647i 8.34346 25.6785i −32.2561 99.2742i −221.480 + 160.915i −106.153 + 77.1248i −146.721 451.561i −348.978 + 1074.04i −589.773 428.495i 1330.42
4.4 −3.24396 2.35687i 8.34346 25.6785i −34.5858 106.444i 354.050 257.233i −87.5868 + 63.6355i 116.729 + 359.256i −297.283 + 914.942i −589.773 428.495i −1754.79
4.5 7.82727 + 5.68684i 8.34346 25.6785i −10.6283 32.7104i −100.934 + 73.3327i 211.336 153.545i −177.127 545.140i 485.517 1494.27i −589.773 428.495i −1207.07
4.6 14.6841 + 10.6686i 8.34346 25.6785i 62.2484 + 191.581i 425.412 309.080i 396.469 288.052i −184.854 568.921i −411.912 + 1267.74i −589.773 428.495i 9544.22
4.7 16.9629 + 12.3242i 8.34346 25.6785i 96.2976 + 296.374i −380.493 + 276.444i 457.997 332.754i 39.7826 + 122.438i −1189.75 + 3661.68i −589.773 428.495i −9861.22
16.1 −6.47025 19.9134i −21.8435 15.8702i −251.124 + 182.452i −11.5844 + 35.6531i −174.697 + 537.661i 80.4609 58.4583i 3089.84 + 2244.90i 225.273 + 693.320i 784.928
16.2 −4.06039 12.4966i −21.8435 15.8702i −36.1242 + 26.2458i 158.380 487.442i −109.631 + 337.408i 846.952 615.347i −886.010 643.724i 225.273 + 693.320i −6734.46
16.3 −2.99223 9.20914i −21.8435 15.8702i 27.6994 20.1248i −60.2993 + 185.582i −80.7902 + 248.647i −765.654 + 556.280i −1270.94 923.389i 225.273 + 693.320i 1889.48
16.4 −0.970201 2.98597i −21.8435 15.8702i 95.5794 69.4425i −100.399 + 308.998i −26.1954 + 80.6212i 1340.18 973.701i −625.207 454.240i 225.273 + 693.320i 1020.07
16.5 0.813458 + 2.50357i −21.8435 15.8702i 97.9481 71.1634i 78.7070 242.235i 21.9634 67.5963i −1135.08 + 824.681i 530.435 + 385.384i 225.273 + 693.320i 670.476
16.6 2.75376 + 8.47521i −21.8435 15.8702i 39.3082 28.5591i −42.2440 + 130.014i 74.3516 228.831i 29.1631 21.1883i 1273.10 + 924.960i 225.273 + 693.320i −1218.22
16.7 4.95371 + 15.2460i −21.8435 15.8702i −104.346 + 75.8118i 99.6953 306.831i 133.750 411.641i 803.319 583.645i −12.6937 9.22251i 225.273 + 693.320i 5171.79
25.1 −17.1972 + 12.4945i 8.34346 + 25.6785i 100.077 308.005i 190.798 + 138.623i −464.324 337.351i −503.289 + 1548.96i 1286.53 + 3959.52i −589.773 + 428.495i −5013.22
25.2 −12.1293 + 8.81245i 8.34346 + 25.6785i 29.9064 92.0423i −3.10808 2.25815i −327.491 237.936i 300.631 925.246i −144.646 445.175i −589.773 + 428.495i 57.5987
25.3 −3.93160 + 2.85647i 8.34346 + 25.6785i −32.2561 + 99.2742i −221.480 160.915i −106.153 77.1248i −146.721 + 451.561i −348.978 1074.04i −589.773 + 428.495i 1330.42
25.4 −3.24396 + 2.35687i 8.34346 + 25.6785i −34.5858 + 106.444i 354.050 + 257.233i −87.5868 63.6355i 116.729 359.256i −297.283 914.942i −589.773 + 428.495i −1754.79
25.5 7.82727 5.68684i 8.34346 + 25.6785i −10.6283 + 32.7104i −100.934 73.3327i 211.336 + 153.545i −177.127 + 545.140i 485.517 + 1494.27i −589.773 + 428.495i −1207.07
25.6 14.6841 10.6686i 8.34346 + 25.6785i 62.2484 191.581i 425.412 + 309.080i 396.469 + 288.052i −184.854 + 568.921i −411.912 1267.74i −589.773 + 428.495i 9544.22
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.8.e.b 28
3.b odd 2 1 99.8.f.b 28
11.c even 5 1 inner 33.8.e.b 28
11.c even 5 1 363.8.a.o 14
11.d odd 10 1 363.8.a.r 14
33.h odd 10 1 99.8.f.b 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.8.e.b 28 1.a even 1 1 trivial
33.8.e.b 28 11.c even 5 1 inner
99.8.f.b 28 3.b odd 2 1
99.8.f.b 28 33.h odd 10 1
363.8.a.o 14 11.c even 5 1
363.8.a.r 14 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{28} + 6 T_{2}^{27} + 386 T_{2}^{26} - 1216 T_{2}^{25} + 235753 T_{2}^{24} + 1933616 T_{2}^{23} + \cdots + 51\!\cdots\!00 \) acting on \(S_{8}^{\mathrm{new}}(33, [\chi])\). Copy content Toggle raw display