Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [33,8,Mod(4,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.4");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.e (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.3087058410\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −18.2616 | − | 13.2678i | −8.34346 | + | 25.6785i | 117.897 | + | 362.849i | −299.083 | + | 217.296i | 493.063 | − | 358.231i | 233.965 | + | 720.070i | 1768.39 | − | 5442.55i | −589.773 | − | 428.495i | 8344.78 | ||
4.2 | −12.1414 | − | 8.82122i | −8.34346 | + | 25.6785i | 30.0447 | + | 92.4681i | 158.638 | − | 115.257i | 327.817 | − | 238.173i | −372.740 | − | 1147.18i | −142.714 | + | 439.227i | −589.773 | − | 428.495i | −2942.80 | ||
4.3 | −8.43584 | − | 6.12900i | −8.34346 | + | 25.6785i | −5.95538 | − | 18.3288i | −186.461 | + | 135.472i | 227.768 | − | 165.483i | −43.6776 | − | 134.426i | −474.540 | + | 1460.49i | −589.773 | − | 428.495i | 2403.26 | ||
4.4 | −2.14212 | − | 1.55634i | −8.34346 | + | 25.6785i | −37.3877 | − | 115.067i | 121.253 | − | 88.0954i | 57.8373 | − | 42.0213i | 231.374 | + | 712.095i | −203.727 | + | 627.009i | −589.773 | − | 428.495i | −396.845 | ||
4.5 | 6.67280 | + | 4.84807i | −8.34346 | + | 25.6785i | −18.5317 | − | 57.0347i | 269.190 | − | 195.578i | −180.166 | + | 130.898i | −36.4929 | − | 112.314i | 479.095 | − | 1474.50i | −589.773 | − | 428.495i | 2744.43 | ||
4.6 | 8.90518 | + | 6.46999i | −8.34346 | + | 25.6785i | −2.11276 | − | 6.50241i | −328.988 | + | 239.024i | −240.440 | + | 174.690i | −385.790 | − | 1187.34i | 458.645 | − | 1411.56i | −589.773 | − | 428.495i | −4476.18 | ||
4.7 | 15.4308 | + | 11.2111i | −8.34346 | + | 25.6785i | 72.8662 | + | 224.259i | 0.205524 | − | 0.149322i | −416.632 | + | 302.701i | 242.486 | + | 746.295i | −635.379 | + | 1955.49i | −589.773 | − | 428.495i | 4.84548 | ||
16.1 | −6.06001 | − | 18.6508i | 21.8435 | + | 15.8702i | −207.575 | + | 150.812i | −96.8862 | + | 298.185i | 163.620 | − | 503.572i | 902.102 | − | 655.415i | 2039.90 | + | 1482.08i | 225.273 | + | 693.320i | 6148.53 | ||
16.2 | −5.89947 | − | 18.1567i | 21.8435 | + | 15.8702i | −191.308 | + | 138.993i | 133.778 | − | 411.726i | 159.286 | − | 490.231i | −1338.24 | + | 972.291i | 1675.32 | + | 1217.19i | 225.273 | + | 693.320i | −8264.81 | ||
16.3 | −1.78222 | − | 5.48510i | 21.8435 | + | 15.8702i | 76.6441 | − | 55.6852i | −142.765 | + | 439.384i | 48.1199 | − | 148.098i | −506.310 | + | 367.856i | −1039.27 | − | 755.075i | 225.273 | + | 693.320i | 2664.50 | ||
16.4 | −0.907839 | − | 2.79404i | 21.8435 | + | 15.8702i | 96.5717 | − | 70.1634i | 61.3322 | − | 188.761i | 24.5117 | − | 75.4391i | −198.219 | + | 144.015i | −587.936 | − | 427.160i | 225.273 | + | 693.320i | −583.086 | ||
16.5 | 2.98016 | + | 9.17200i | 21.8435 | + | 15.8702i | 28.3100 | − | 20.5684i | 33.3401 | − | 102.610i | −80.4644 | + | 247.644i | 1247.17 | − | 906.120i | 1271.70 | + | 923.944i | 225.273 | + | 693.320i | 1040.50 | ||
16.6 | 3.92793 | + | 12.0889i | 21.8435 | + | 15.8702i | −27.1593 | + | 19.7324i | −17.6507 | + | 54.3232i | −106.054 | + | 326.401i | −962.124 | + | 699.024i | 971.059 | + | 705.516i | 225.273 | + | 693.320i | −726.039 | ||
16.7 | 6.71359 | + | 20.6623i | 21.8435 | + | 15.8702i | −278.304 | + | 202.200i | −94.4035 | + | 290.544i | −181.267 | + | 557.882i | 945.004 | − | 686.586i | −3796.54 | − | 2758.35i | 225.273 | + | 693.320i | −6637.09 | ||
25.1 | −18.2616 | + | 13.2678i | −8.34346 | − | 25.6785i | 117.897 | − | 362.849i | −299.083 | − | 217.296i | 493.063 | + | 358.231i | 233.965 | − | 720.070i | 1768.39 | + | 5442.55i | −589.773 | + | 428.495i | 8344.78 | ||
25.2 | −12.1414 | + | 8.82122i | −8.34346 | − | 25.6785i | 30.0447 | − | 92.4681i | 158.638 | + | 115.257i | 327.817 | + | 238.173i | −372.740 | + | 1147.18i | −142.714 | − | 439.227i | −589.773 | + | 428.495i | −2942.80 | ||
25.3 | −8.43584 | + | 6.12900i | −8.34346 | − | 25.6785i | −5.95538 | + | 18.3288i | −186.461 | − | 135.472i | 227.768 | + | 165.483i | −43.6776 | + | 134.426i | −474.540 | − | 1460.49i | −589.773 | + | 428.495i | 2403.26 | ||
25.4 | −2.14212 | + | 1.55634i | −8.34346 | − | 25.6785i | −37.3877 | + | 115.067i | 121.253 | + | 88.0954i | 57.8373 | + | 42.0213i | 231.374 | − | 712.095i | −203.727 | − | 627.009i | −589.773 | + | 428.495i | −396.845 | ||
25.5 | 6.67280 | − | 4.84807i | −8.34346 | − | 25.6785i | −18.5317 | + | 57.0347i | 269.190 | + | 195.578i | −180.166 | − | 130.898i | −36.4929 | + | 112.314i | 479.095 | + | 1474.50i | −589.773 | + | 428.495i | 2744.43 | ||
25.6 | 8.90518 | − | 6.46999i | −8.34346 | − | 25.6785i | −2.11276 | + | 6.50241i | −328.988 | − | 239.024i | −240.440 | − | 174.690i | −385.790 | + | 1187.34i | 458.645 | + | 1411.56i | −589.773 | + | 428.495i | −4476.18 | ||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.8.e.a | ✓ | 28 |
3.b | odd | 2 | 1 | 99.8.f.c | 28 | ||
11.c | even | 5 | 1 | inner | 33.8.e.a | ✓ | 28 |
11.c | even | 5 | 1 | 363.8.a.q | 14 | ||
11.d | odd | 10 | 1 | 363.8.a.p | 14 | ||
33.h | odd | 10 | 1 | 99.8.f.c | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.8.e.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
33.8.e.a | ✓ | 28 | 11.c | even | 5 | 1 | inner |
99.8.f.c | 28 | 3.b | odd | 2 | 1 | ||
99.8.f.c | 28 | 33.h | odd | 10 | 1 | ||
363.8.a.p | 14 | 11.d | odd | 10 | 1 | ||
363.8.a.q | 14 | 11.c | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{28} + 22 T_{2}^{27} + 1036 T_{2}^{26} + 16944 T_{2}^{25} + 574889 T_{2}^{24} + 6855516 T_{2}^{23} + 234979339 T_{2}^{22} + 2089735763 T_{2}^{21} + 94011380549 T_{2}^{20} + \cdots + 74\!\cdots\!00 \)
acting on \(S_{8}^{\mathrm{new}}(33, [\chi])\).