Properties

Label 33.8.e
Level $33$
Weight $8$
Character orbit 33.e
Rep. character $\chi_{33}(4,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $56$
Newform subspaces $2$
Sturm bound $32$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 33.e (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(33, [\chi])\).

Total New Old
Modular forms 120 56 64
Cusp forms 104 56 48
Eisenstein series 16 0 16

Trace form

\( 56 q - 28 q^{2} - 532 q^{4} - 4 q^{5} + 432 q^{6} + 1206 q^{7} + 6524 q^{8} - 10206 q^{9} - 11992 q^{10} - 5642 q^{11} - 15336 q^{12} + 28134 q^{13} + 59594 q^{14} - 45630 q^{15} - 149344 q^{16} + 19958 q^{17}+ \cdots + 5079672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(33, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
33.8.e.a 33.e 11.c $28$ $10.309$ None 33.8.e.a \(-22\) \(189\) \(-777\) \(-83\) $\mathrm{SU}(2)[C_{5}]$
33.8.e.b 33.e 11.c $28$ $10.309$ None 33.8.e.b \(-6\) \(-189\) \(773\) \(1289\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{8}^{\mathrm{old}}(33, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(33, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 2}\)