Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [33,8,Mod(32,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.32");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.3087058410\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −21.2791 | 13.2650 | − | 44.8446i | 324.799 | 116.081i | −282.268 | + | 954.252i | − | 73.6975i | −4187.71 | −1835.08 | − | 1189.73i | − | 2470.10i | ||||||||||
32.2 | −21.2791 | 13.2650 | + | 44.8446i | 324.799 | − | 116.081i | −282.268 | − | 954.252i | 73.6975i | −4187.71 | −1835.08 | + | 1189.73i | 2470.10i | |||||||||||
32.3 | −17.1890 | −43.8101 | − | 16.3606i | 167.460 | − | 90.8965i | 753.051 | + | 281.222i | 1506.19i | −678.279 | 1651.66 | + | 1433.52i | 1562.42i | |||||||||||
32.4 | −17.1890 | −43.8101 | + | 16.3606i | 167.460 | 90.8965i | 753.051 | − | 281.222i | − | 1506.19i | −678.279 | 1651.66 | − | 1433.52i | − | 1562.42i | ||||||||||
32.5 | −15.1340 | 46.1737 | − | 7.41559i | 101.039 | − | 382.367i | −698.794 | + | 112.228i | 606.007i | 408.027 | 2077.02 | − | 684.810i | 5786.75i | |||||||||||
32.6 | −15.1340 | 46.1737 | + | 7.41559i | 101.039 | 382.367i | −698.794 | − | 112.228i | − | 606.007i | 408.027 | 2077.02 | + | 684.810i | − | 5786.75i | ||||||||||
32.7 | −10.8692 | −0.0827838 | − | 46.7653i | −9.86124 | − | 348.238i | 0.899791 | + | 508.300i | − | 1046.71i | 1498.44 | −2186.99 | + | 7.74282i | 3785.06i | ||||||||||
32.8 | −10.8692 | −0.0827838 | + | 46.7653i | −9.86124 | 348.238i | 0.899791 | − | 508.300i | 1046.71i | 1498.44 | −2186.99 | − | 7.74282i | − | 3785.06i | |||||||||||
32.9 | −10.1755 | −20.0376 | − | 42.2551i | −24.4601 | 419.841i | 203.892 | + | 429.965i | − | 43.4849i | 1551.35 | −1383.99 | + | 1693.38i | − | 4272.07i | ||||||||||
32.10 | −10.1755 | −20.0376 | + | 42.2551i | −24.4601 | − | 419.841i | 203.892 | − | 429.965i | 43.4849i | 1551.35 | −1383.99 | − | 1693.38i | 4272.07i | |||||||||||
32.11 | −4.00282 | 34.4918 | − | 31.5803i | −111.977 | 109.310i | −138.065 | + | 126.410i | 1222.62i | 960.586 | 192.374 | − | 2178.52i | − | 437.547i | |||||||||||
32.12 | −4.00282 | 34.4918 | + | 31.5803i | −111.977 | − | 109.310i | −138.065 | − | 126.410i | − | 1222.62i | 960.586 | 192.374 | + | 2178.52i | 437.547i | ||||||||||
32.13 | 4.00282 | 34.4918 | − | 31.5803i | −111.977 | 109.310i | 138.065 | − | 126.410i | − | 1222.62i | −960.586 | 192.374 | − | 2178.52i | 437.547i | |||||||||||
32.14 | 4.00282 | 34.4918 | + | 31.5803i | −111.977 | − | 109.310i | 138.065 | + | 126.410i | 1222.62i | −960.586 | 192.374 | + | 2178.52i | − | 437.547i | ||||||||||
32.15 | 10.1755 | −20.0376 | − | 42.2551i | −24.4601 | 419.841i | −203.892 | − | 429.965i | 43.4849i | −1551.35 | −1383.99 | + | 1693.38i | 4272.07i | ||||||||||||
32.16 | 10.1755 | −20.0376 | + | 42.2551i | −24.4601 | − | 419.841i | −203.892 | + | 429.965i | − | 43.4849i | −1551.35 | −1383.99 | − | 1693.38i | − | 4272.07i | |||||||||
32.17 | 10.8692 | −0.0827838 | − | 46.7653i | −9.86124 | − | 348.238i | −0.899791 | − | 508.300i | 1046.71i | −1498.44 | −2186.99 | + | 7.74282i | − | 3785.06i | ||||||||||
32.18 | 10.8692 | −0.0827838 | + | 46.7653i | −9.86124 | 348.238i | −0.899791 | + | 508.300i | − | 1046.71i | −1498.44 | −2186.99 | − | 7.74282i | 3785.06i | |||||||||||
32.19 | 15.1340 | 46.1737 | − | 7.41559i | 101.039 | − | 382.367i | 698.794 | − | 112.228i | − | 606.007i | −408.027 | 2077.02 | − | 684.810i | − | 5786.75i | |||||||||
32.20 | 15.1340 | 46.1737 | + | 7.41559i | 101.039 | 382.367i | 698.794 | + | 112.228i | 606.007i | −408.027 | 2077.02 | + | 684.810i | 5786.75i | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.8.d.b | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 33.8.d.b | ✓ | 24 |
11.b | odd | 2 | 1 | inner | 33.8.d.b | ✓ | 24 |
33.d | even | 2 | 1 | inner | 33.8.d.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.8.d.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
33.8.d.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
33.8.d.b | ✓ | 24 | 11.b | odd | 2 | 1 | inner |
33.8.d.b | ✓ | 24 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} - 1215 T_{2}^{10} + 553254 T_{2}^{8} - 118801512 T_{2}^{6} + 12291842016 T_{2}^{4} - 543457517184 T_{2}^{2} + 6005462031360 \)
acting on \(S_{8}^{\mathrm{new}}(33, [\chi])\).