[N,k,chi] = [33,8,Mod(1,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(1\)
\(11\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - 9T_{2}^{2} - 144T_{2} - 280 \)
T2^3 - 9*T2^2 - 144*T2 - 280
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(33))\).
$p$
$F_p(T)$
$2$
\( T^{3} - 9 T^{2} - 144 T - 280 \)
T^3 - 9*T^2 - 144*T - 280
$3$
\( (T + 27)^{3} \)
(T + 27)^3
$5$
\( T^{3} + 444 T^{2} - 33180 T - 980800 \)
T^3 + 444*T^2 - 33180*T - 980800
$7$
\( T^{3} - 1614 T^{2} + \cdots + 3449053112 \)
T^3 - 1614*T^2 - 2163396*T + 3449053112
$11$
\( (T + 1331)^{3} \)
(T + 1331)^3
$13$
\( T^{3} - 20772 T^{2} + \cdots + 665759180384 \)
T^3 - 20772*T^2 + 44436708*T + 665759180384
$17$
\( T^{3} + 14538 T^{2} + \cdots - 11730861043168 \)
T^3 + 14538*T^2 - 818259552*T - 11730861043168
$19$
\( T^{3} - 24492 T^{2} + \cdots - 5608943166816 \)
T^3 - 24492*T^2 - 1204747452*T - 5608943166816
$23$
\( T^{3} + \cdots + 200462606267008 \)
T^3 - 35094*T^2 - 7952126688*T + 200462606267008
$29$
\( T^{3} + 179862 T^{2} + \cdots + 61407931779072 \)
T^3 + 179862*T^2 - 11437687680*T + 61407931779072
$31$
\( T^{3} - 288888 T^{2} + \cdots + 19\!\cdots\!96 \)
T^3 - 288888*T^2 - 5454223872*T + 1912407630749696
$37$
\( T^{3} - 107562 T^{2} + \cdots + 11\!\cdots\!64 \)
T^3 - 107562*T^2 - 11195717604*T + 1189844764073064
$41$
\( T^{3} + 135198 T^{2} + \cdots - 12\!\cdots\!52 \)
T^3 + 135198*T^2 - 8930828160*T - 1276226223818752
$43$
\( T^{3} - 193536 T^{2} + \cdots - 20\!\cdots\!12 \)
T^3 - 193536*T^2 - 181930168716*T - 20672203928496912
$47$
\( T^{3} + 591486 T^{2} + \cdots + 94\!\cdots\!80 \)
T^3 + 591486*T^2 - 611447094144*T + 94663336510842880
$53$
\( T^{3} - 79044 T^{2} + \cdots + 29\!\cdots\!44 \)
T^3 - 79044*T^2 - 994803190908*T + 294486119227069344
$59$
\( T^{3} - 2532768 T^{2} + \cdots + 38\!\cdots\!00 \)
T^3 - 2532768*T^2 - 877661239344*T + 3844870229226736000
$61$
\( T^{3} - 6678792 T^{2} + \cdots - 45\!\cdots\!60 \)
T^3 - 6678792*T^2 + 12546376324788*T - 4529577947471620560
$67$
\( T^{3} - 7150356 T^{2} + \cdots - 13\!\cdots\!00 \)
T^3 - 7150356*T^2 + 16871120222256*T - 13157169586500939200
$71$
\( T^{3} - 1390398 T^{2} + \cdots + 13\!\cdots\!84 \)
T^3 - 1390398*T^2 - 20891916532608*T + 13710207212579395584
$73$
\( T^{3} + 6429114 T^{2} + \cdots + 26\!\cdots\!96 \)
T^3 + 6429114*T^2 + 11138115578460*T + 2627289632174804696
$79$
\( T^{3} - 6873186 T^{2} + \cdots - 11\!\cdots\!12 \)
T^3 - 6873186*T^2 - 6105162734484*T - 1156168887952201112
$83$
\( T^{3} - 6505596 T^{2} + \cdots + 81\!\cdots\!28 \)
T^3 - 6505596*T^2 - 10235053662336*T + 81936383266096432128
$89$
\( T^{3} + 8842962 T^{2} + \cdots - 26\!\cdots\!48 \)
T^3 + 8842962*T^2 - 1344010660692*T - 26294899478004065448
$97$
\( T^{3} + 1764774 T^{2} + \cdots + 24\!\cdots\!84 \)
T^3 + 1764774*T^2 - 6645491951988*T + 248997277649499784
show more
show less