[N,k,chi] = [33,8,Mod(1,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(11\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 19T_{2} + 46 \)
T2^2 + 19*T2 + 46
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(33))\).
$p$
$F_p(T)$
$2$
\( T^{2} + 19T + 46 \)
T^2 + 19*T + 46
$3$
\( (T - 27)^{2} \)
(T - 27)^2
$5$
\( T^{2} + 34T - 63608 \)
T^2 + 34*T - 63608
$7$
\( T^{2} + 166 T - 1042544 \)
T^2 + 166*T - 1042544
$11$
\( (T + 1331)^{2} \)
(T + 1331)^2
$13$
\( T^{2} + 12670 T + 6020608 \)
T^2 + 12670*T + 6020608
$17$
\( T^{2} + 62344 T + 927796876 \)
T^2 + 62344*T + 927796876
$19$
\( T^{2} + 37980 T + 328498848 \)
T^2 + 37980*T + 328498848
$23$
\( T^{2} + 90686 T + 282938824 \)
T^2 + 90686*T + 282938824
$29$
\( T^{2} - 13992 T - 38836484052 \)
T^2 - 13992*T - 38836484052
$31$
\( T^{2} - 245000 T + 1286906368 \)
T^2 - 245000*T + 1286906368
$37$
\( T^{2} - 327852 T - 6524218716 \)
T^2 - 327852*T - 6524218716
$41$
\( T^{2} + 275932 T - 322827909452 \)
T^2 + 275932*T - 322827909452
$43$
\( T^{2} + 244104 T - 207765596544 \)
T^2 + 244104*T - 207765596544
$47$
\( T^{2} - 536926 T - 176077767704 \)
T^2 - 536926*T - 176077767704
$53$
\( T^{2} + 1821882 T + 397572445128 \)
T^2 + 1821882*T + 397572445128
$59$
\( T^{2} - 2502028 T - 24663435104 \)
T^2 - 2502028*T - 24663435104
$61$
\( T^{2} + 2191098 T - 604169699352 \)
T^2 + 2191098*T - 604169699352
$67$
\( T^{2} - 1674784 T - 8829893772944 \)
T^2 - 1674784*T - 8829893772944
$71$
\( T^{2} + 368310 T - 24503996328 \)
T^2 + 368310*T - 24503996328
$73$
\( T^{2} + 3336604 T - 5666837293628 \)
T^2 + 3336604*T - 5666837293628
$79$
\( T^{2} + 1682618 T - 21513626700752 \)
T^2 + 1682618*T - 21513626700752
$83$
\( T^{2} + 8376504 T + 8122054073616 \)
T^2 + 8376504*T + 8122054073616
$89$
\( T^{2} - 9027204 T - 15754651515708 \)
T^2 - 9027204*T - 15754651515708
$97$
\( T^{2} + 16703552 T + 69751828200124 \)
T^2 + 16703552*T + 69751828200124
show more
show less