Properties

Label 33.8
Level 33
Weight 8
Dimension 198
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 640
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 33 = 3 \cdot 11 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(640\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(33))\).

Total New Old
Modular forms 300 218 82
Cusp forms 260 198 62
Eisenstein series 40 20 20

Trace form

\( 198 q - 12 q^{2} + 49 q^{3} + 174 q^{4} - 780 q^{5} - 1401 q^{6} + 2088 q^{7} + 11600 q^{8} - 4333 q^{9} - 24680 q^{10} - 5642 q^{11} + 11662 q^{12} + 34116 q^{13} + 90318 q^{14} - 40885 q^{15} - 127042 q^{16}+ \cdots + 89574197 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(33))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
33.8.a \(\chi_{33}(1, \cdot)\) 33.8.a.a 1 1
33.8.a.b 2
33.8.a.c 2
33.8.a.d 3
33.8.a.e 4
33.8.d \(\chi_{33}(32, \cdot)\) 33.8.d.a 2 1
33.8.d.b 24
33.8.e \(\chi_{33}(4, \cdot)\) 33.8.e.a 28 4
33.8.e.b 28
33.8.f \(\chi_{33}(2, \cdot)\) 33.8.f.a 104 4

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(33))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(33)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)