# Properties

 Label 33.6.f.a.2.5 Level $33$ Weight $6$ Character 33.2 Analytic conductor $5.293$ Analytic rank $0$ Dimension $72$ CM no Inner twists $4$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [33,6,Mod(2,33)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(33, base_ring=CyclotomicField(10))

chi = DirichletCharacter(H, H._module([5, 1]))

N = Newforms(chi, 6, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("33.2");

S:= CuspForms(chi, 6);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$33 = 3 \cdot 11$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 33.f (of order $$10$$, degree $$4$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$5.29266605383$$ Analytic rank: $$0$$ Dimension: $$72$$ Relative dimension: $$18$$ over $$\Q(\zeta_{10})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

## Embedding invariants

 Embedding label 2.5 Character $$\chi$$ $$=$$ 33.2 Dual form 33.6.f.a.17.5

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-1.97194 + 6.06902i) q^{2} +(4.72506 - 14.8551i) q^{3} +(-7.05585 - 5.12637i) q^{4} +(-59.6930 + 19.3954i) q^{5} +(80.8382 + 57.9699i) q^{6} +(-97.0552 + 133.585i) q^{7} +(-120.178 + 87.3143i) q^{8} +(-198.348 - 140.382i) q^{9} +O(q^{10})$$ $$q+(-1.97194 + 6.06902i) q^{2} +(4.72506 - 14.8551i) q^{3} +(-7.05585 - 5.12637i) q^{4} +(-59.6930 + 19.3954i) q^{5} +(80.8382 + 57.9699i) q^{6} +(-97.0552 + 133.585i) q^{7} +(-120.178 + 87.3143i) q^{8} +(-198.348 - 140.382i) q^{9} -400.525i q^{10} +(390.430 + 92.8174i) q^{11} +(-109.492 + 80.5928i) q^{12} +(-1021.69 - 331.966i) q^{13} +(-619.342 - 852.451i) q^{14} +(6.06792 + 978.390i) q^{15} +(-379.171 - 1166.97i) q^{16} +(77.1051 + 237.305i) q^{17} +(1243.11 - 926.949i) q^{18} +(1751.76 + 2411.09i) q^{19} +(520.613 + 169.157i) q^{20} +(1525.83 + 2072.96i) q^{21} +(-1333.22 + 2186.50i) q^{22} -1763.53i q^{23} +(729.215 + 2197.82i) q^{24} +(658.898 - 478.717i) q^{25} +(4029.41 - 5546.01i) q^{26} +(-3022.60 + 2283.16i) q^{27} +(1369.61 - 445.014i) q^{28} +(2059.70 + 1496.46i) q^{29} +(-5949.83 - 1892.50i) q^{30} +(547.442 - 1684.85i) q^{31} +3076.52 q^{32} +(3223.62 - 5361.31i) q^{33} -1592.25 q^{34} +(3202.58 - 9856.52i) q^{35} +(679.858 + 2007.32i) q^{36} +(1794.75 + 1303.96i) q^{37} +(-18087.3 + 5876.92i) q^{38} +(-9758.91 + 13608.7i) q^{39} +(5480.28 - 7542.96i) q^{40} +(69.9620 - 50.8304i) q^{41} +(-15589.7 + 5172.50i) q^{42} +461.539i q^{43} +(-2279.00 - 2656.40i) q^{44} +(14562.8 + 4532.81i) q^{45} +(10702.9 + 3477.58i) q^{46} +(9135.16 + 12573.5i) q^{47} +(-19127.0 + 118.625i) q^{48} +(-3231.60 - 9945.83i) q^{49} +(1606.03 + 4942.86i) q^{50} +(3889.51 - 24.1226i) q^{51} +(5507.08 + 7579.84i) q^{52} +(-10804.7 - 3510.66i) q^{53} +(-7896.12 - 22846.5i) q^{54} +(-25106.2 + 2032.02i) q^{55} -24528.3i q^{56} +(44094.1 - 14630.0i) q^{57} +(-13143.7 + 9549.43i) q^{58} +(-8500.25 + 11699.6i) q^{59} +(4972.78 - 6934.48i) q^{60} +(-25093.2 + 8153.27i) q^{61} +(9145.87 + 6644.86i) q^{62} +(38003.7 - 12871.4i) q^{63} +(6066.76 - 18671.6i) q^{64} +67426.2 q^{65} +(26181.1 + 30136.4i) q^{66} -16712.0 q^{67} +(672.472 - 2069.66i) q^{68} +(-26197.4 - 8332.79i) q^{69} +(53504.1 + 38873.0i) q^{70} +(-54633.9 + 17751.6i) q^{71} +(36094.4 - 447.728i) q^{72} +(5083.88 - 6997.36i) q^{73} +(-11452.9 + 8321.02i) q^{74} +(-3998.06 - 12050.0i) q^{75} -25992.4i q^{76} +(-50292.3 + 43147.2i) q^{77} +(-63347.3 - 86062.5i) q^{78} +(2618.63 + 850.844i) q^{79} +(45267.8 + 62305.7i) q^{80} +(19634.5 + 55689.0i) q^{81} +(170.529 + 524.835i) q^{82} +(-10500.4 - 32316.9i) q^{83} +(-139.224 - 22448.4i) q^{84} +(-9205.27 - 12670.0i) q^{85} +(-2801.09 - 910.129i) q^{86} +(31962.3 - 23526.2i) q^{87} +(-55025.4 + 22935.6i) q^{88} +32577.0i q^{89} +(-56226.6 + 79443.1i) q^{90} +(143506. - 104263. i) q^{91} +(-9040.51 + 12443.2i) q^{92} +(-22441.9 - 16093.3i) q^{93} +(-94322.5 + 30647.3i) q^{94} +(-151332. - 109949. i) q^{95} +(14536.7 - 45702.0i) q^{96} +(-33674.6 + 103640. i) q^{97} +66733.9 q^{98} +(-64411.0 - 73219.7i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$72 q + 18 q^{3} - 262 q^{4} + 15 q^{6} - 10 q^{7} + 292 q^{9}+O(q^{10})$$ 72 * q + 18 * q^3 - 262 * q^4 + 15 * q^6 - 10 * q^7 + 292 * q^9 $$72 q + 18 q^{3} - 262 q^{4} + 15 q^{6} - 10 q^{7} + 292 q^{9} + 1854 q^{12} - 10 q^{13} - 762 q^{15} - 10122 q^{16} + 4815 q^{18} + 4460 q^{19} + 4628 q^{22} - 805 q^{24} + 13708 q^{25} + 6108 q^{27} - 28130 q^{28} - 15470 q^{30} + 4340 q^{31} - 508 q^{33} + 18732 q^{34} - 56461 q^{36} + 978 q^{37} + 23360 q^{39} + 69750 q^{40} + 60788 q^{42} - 31356 q^{45} - 52090 q^{46} + 4238 q^{48} - 58448 q^{49} - 178950 q^{51} - 14190 q^{52} + 86600 q^{55} + 266190 q^{57} + 137102 q^{58} + 284090 q^{60} - 77890 q^{61} - 120330 q^{63} - 379114 q^{64} - 323304 q^{66} + 42668 q^{67} - 271816 q^{69} + 87176 q^{70} + 343960 q^{72} + 116440 q^{73} + 326202 q^{75} + 155512 q^{78} - 350590 q^{79} - 208088 q^{81} - 606424 q^{82} - 220680 q^{84} + 665610 q^{85} + 1152974 q^{88} + 293440 q^{90} + 621014 q^{91} + 478456 q^{93} - 521270 q^{94} - 1246430 q^{96} - 1030446 q^{97} - 590000 q^{99}+O(q^{100})$$ 72 * q + 18 * q^3 - 262 * q^4 + 15 * q^6 - 10 * q^7 + 292 * q^9 + 1854 * q^12 - 10 * q^13 - 762 * q^15 - 10122 * q^16 + 4815 * q^18 + 4460 * q^19 + 4628 * q^22 - 805 * q^24 + 13708 * q^25 + 6108 * q^27 - 28130 * q^28 - 15470 * q^30 + 4340 * q^31 - 508 * q^33 + 18732 * q^34 - 56461 * q^36 + 978 * q^37 + 23360 * q^39 + 69750 * q^40 + 60788 * q^42 - 31356 * q^45 - 52090 * q^46 + 4238 * q^48 - 58448 * q^49 - 178950 * q^51 - 14190 * q^52 + 86600 * q^55 + 266190 * q^57 + 137102 * q^58 + 284090 * q^60 - 77890 * q^61 - 120330 * q^63 - 379114 * q^64 - 323304 * q^66 + 42668 * q^67 - 271816 * q^69 + 87176 * q^70 + 343960 * q^72 + 116440 * q^73 + 326202 * q^75 + 155512 * q^78 - 350590 * q^79 - 208088 * q^81 - 606424 * q^82 - 220680 * q^84 + 665610 * q^85 + 1152974 * q^88 + 293440 * q^90 + 621014 * q^91 + 478456 * q^93 - 521270 * q^94 - 1246430 * q^96 - 1030446 * q^97 - 590000 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/33\mathbb{Z}\right)^\times$$.

 $$n$$ $$13$$ $$23$$ $$\chi(n)$$ $$e\left(\frac{1}{10}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.97194 + 6.06902i −0.348593 + 1.07286i 0.611038 + 0.791601i $$0.290752\pi$$
−0.959632 + 0.281259i $$0.909248\pi$$
$$3$$ 4.72506 14.8551i 0.303113 0.952955i
$$4$$ −7.05585 5.12637i −0.220495 0.160199i
$$5$$ −59.6930 + 19.3954i −1.06782 + 0.346956i −0.789639 0.613572i $$-0.789732\pi$$
−0.278183 + 0.960528i $$0.589732\pi$$
$$6$$ 80.8382 + 57.9699i 0.916724 + 0.657392i
$$7$$ −97.0552 + 133.585i −0.748641 + 1.03042i 0.249434 + 0.968392i $$0.419756\pi$$
−0.998075 + 0.0620242i $$0.980244\pi$$
$$8$$ −120.178 + 87.3143i −0.663895 + 0.482348i
$$9$$ −198.348 140.382i −0.816245 0.577705i
$$10$$ 400.525i 1.26657i
$$11$$ 390.430 + 92.8174i 0.972886 + 0.231285i
$$12$$ −109.492 + 80.5928i −0.219497 + 0.161564i
$$13$$ −1021.69 331.966i −1.67671 0.544797i −0.692445 0.721471i $$-0.743466\pi$$
−0.984270 + 0.176673i $$0.943466\pi$$
$$14$$ −619.342 852.451i −0.844521 1.16238i
$$15$$ 6.06792 + 978.390i 0.00696325 + 1.12275i
$$16$$ −379.171 1166.97i −0.370284 1.13962i
$$17$$ 77.1051 + 237.305i 0.0647084 + 0.199152i 0.978184 0.207743i $$-0.0666116\pi$$
−0.913475 + 0.406895i $$0.866612\pi$$
$$18$$ 1243.11 926.949i 0.904335 0.674333i
$$19$$ 1751.76 + 2411.09i 1.11324 + 1.53225i 0.816548 + 0.577277i $$0.195885\pi$$
0.296696 + 0.954972i $$0.404115\pi$$
$$20$$ 520.613 + 169.157i 0.291032 + 0.0945619i
$$21$$ 1525.83 + 2072.96i 0.755017 + 1.02575i
$$22$$ −1333.22 + 2186.50i −0.587278 + 0.963146i
$$23$$ 1763.53i 0.695126i −0.937657 0.347563i $$-0.887009\pi$$
0.937657 0.347563i $$-0.112991\pi$$
$$24$$ 729.215 + 2197.82i 0.258421 + 0.778868i
$$25$$ 658.898 478.717i 0.210847 0.153189i
$$26$$ 4029.41 5546.01i 1.16898 1.60897i
$$27$$ −3022.60 + 2283.16i −0.797942 + 0.602735i
$$28$$ 1369.61 445.014i 0.330143 0.107270i
$$29$$ 2059.70 + 1496.46i 0.454789 + 0.330423i 0.791484 0.611191i $$-0.209309\pi$$
−0.336695 + 0.941614i $$0.609309\pi$$
$$30$$ −5949.83 1892.50i −1.20698 0.383914i
$$31$$ 547.442 1684.85i 0.102314 0.314889i −0.886777 0.462198i $$-0.847061\pi$$
0.989091 + 0.147309i $$0.0470610\pi$$
$$32$$ 3076.52 0.531110
$$33$$ 3223.62 5361.31i 0.515298 0.857011i
$$34$$ −1592.25 −0.236219
$$35$$ 3202.58 9856.52i 0.441906 1.36005i
$$36$$ 679.858 + 2007.32i 0.0874302 + 0.258143i
$$37$$ 1794.75 + 1303.96i 0.215526 + 0.156589i 0.690310 0.723513i $$-0.257474\pi$$
−0.474784 + 0.880102i $$0.657474\pi$$
$$38$$ −18087.3 + 5876.92i −2.03196 + 0.660223i
$$39$$ −9758.91 + 13608.7i −1.02740 + 1.43270i
$$40$$ 5480.28 7542.96i 0.541568 0.745404i
$$41$$ 69.9620 50.8304i 0.00649984 0.00472241i −0.584531 0.811372i $$-0.698721\pi$$
0.591030 + 0.806649i $$0.298721\pi$$
$$42$$ −15589.7 + 5172.50i −1.36368 + 0.452457i
$$43$$ 461.539i 0.0380660i 0.999819 + 0.0190330i $$0.00605876\pi$$
−0.999819 + 0.0190330i $$0.993941\pi$$
$$44$$ −2279.00 2656.40i −0.177465 0.206853i
$$45$$ 14562.8 + 4532.81i 1.07204 + 0.333685i
$$46$$ 10702.9 + 3477.58i 0.745773 + 0.242316i
$$47$$ 9135.16 + 12573.5i 0.603214 + 0.830253i 0.995998 0.0893782i $$-0.0284880\pi$$
−0.392784 + 0.919631i $$0.628488\pi$$
$$48$$ −19127.0 + 118.625i −1.19824 + 0.00743143i
$$49$$ −3231.60 9945.83i −0.192277 0.591767i
$$50$$ 1606.03 + 4942.86i 0.0908510 + 0.279611i
$$51$$ 3889.51 24.1226i 0.209397 0.00129867i
$$52$$ 5507.08 + 7579.84i 0.282431 + 0.388733i
$$53$$ −10804.7 3510.66i −0.528352 0.171672i 0.0326806 0.999466i $$-0.489596\pi$$
−0.561032 + 0.827794i $$0.689596\pi$$
$$54$$ −7896.12 22846.5i −0.368493 1.06619i
$$55$$ −25106.2 + 2032.02i −1.11911 + 0.0905777i
$$56$$ 24528.3i 1.04519i
$$57$$ 44094.1 14630.0i 1.79760 0.596427i
$$58$$ −13143.7 + 9549.43i −0.513034 + 0.372741i
$$59$$ −8500.25 + 11699.6i −0.317908 + 0.437563i −0.937827 0.347103i $$-0.887165\pi$$
0.619919 + 0.784666i $$0.287165\pi$$
$$60$$ 4972.78 6934.48i 0.178329 0.248677i
$$61$$ −25093.2 + 8153.27i −0.863438 + 0.280548i −0.707064 0.707150i $$-0.749981\pi$$
−0.156374 + 0.987698i $$0.549981\pi$$
$$62$$ 9145.87 + 6644.86i 0.302166 + 0.219537i
$$63$$ 38003.7 12871.4i 1.20635 0.408578i
$$64$$ 6066.76 18671.6i 0.185143 0.569811i
$$65$$ 67426.2 1.97945
$$66$$ 26181.1 + 30136.4i 0.739823 + 0.851592i
$$67$$ −16712.0 −0.454823 −0.227411 0.973799i $$-0.573026\pi$$
−0.227411 + 0.973799i $$0.573026\pi$$
$$68$$ 672.472 2069.66i 0.0176361 0.0542783i
$$69$$ −26197.4 8332.79i −0.662423 0.210701i
$$70$$ 53504.1 + 38873.0i 1.30509 + 0.948207i
$$71$$ −54633.9 + 17751.6i −1.28622 + 0.417919i −0.870768 0.491695i $$-0.836378\pi$$
−0.415455 + 0.909614i $$0.636378\pi$$
$$72$$ 36094.4 447.728i 0.820556 0.0101785i
$$73$$ 5083.88 6997.36i 0.111658 0.153683i −0.749531 0.661970i $$-0.769721\pi$$
0.861188 + 0.508286i $$0.169721\pi$$
$$74$$ −11452.9 + 8321.02i −0.243129 + 0.176643i
$$75$$ −3998.06 12050.0i −0.0820722 0.247362i
$$76$$ 25992.4i 0.516194i
$$77$$ −50292.3 + 43147.2i −0.966662 + 0.829328i
$$78$$ −63347.3 86062.5i −1.17894 1.60169i
$$79$$ 2618.63 + 850.844i 0.0472070 + 0.0153385i 0.332525 0.943094i $$-0.392099\pi$$
−0.285318 + 0.958433i $$0.592099\pi$$
$$80$$ 45267.8 + 62305.7i 0.790795 + 1.08844i
$$81$$ 19634.5 + 55689.0i 0.332513 + 0.943099i
$$82$$ 170.529 + 524.835i 0.00280069 + 0.00861963i
$$83$$ −10500.4 32316.9i −0.167306 0.514914i 0.831893 0.554936i $$-0.187257\pi$$
−0.999199 + 0.0400220i $$0.987257\pi$$
$$84$$ −139.224 22448.4i −0.00215286 0.347127i
$$85$$ −9205.27 12670.0i −0.138194 0.190208i
$$86$$ −2801.09 910.129i −0.0408395 0.0132696i
$$87$$ 31962.3 23526.2i 0.452731 0.333237i
$$88$$ −55025.4 + 22935.6i −0.757454 + 0.315721i
$$89$$ 32577.0i 0.435949i 0.975954 + 0.217974i $$0.0699449\pi$$
−0.975954 + 0.217974i $$0.930055\pi$$
$$90$$ −56226.6 + 79443.1i −0.731705 + 1.03383i
$$91$$ 143506. 104263.i 1.81663 1.31986i
$$92$$ −9040.51 + 12443.2i −0.111359 + 0.153272i
$$93$$ −22441.9 16093.3i −0.269062 0.192947i
$$94$$ −94322.5 + 30647.3i −1.10102 + 0.357744i
$$95$$ −151332. 109949.i −1.72037 1.24992i
$$96$$ 14536.7 45702.0i 0.160986 0.506124i
$$97$$ −33674.6 + 103640.i −0.363390 + 1.11840i 0.587593 + 0.809157i $$0.300076\pi$$
−0.950983 + 0.309243i $$0.899924\pi$$
$$98$$ 66733.9 0.701910
$$99$$ −64411.0 73219.7i −0.660499 0.750827i
$$100$$ −7103.16 −0.0710316
$$101$$ −56617.1 + 174249.i −0.552260 + 1.69968i 0.150810 + 0.988563i $$0.451812\pi$$
−0.703071 + 0.711120i $$0.748188\pi$$
$$102$$ −7523.50 + 23653.1i −0.0716010 + 0.225106i
$$103$$ −17549.4 12750.4i −0.162993 0.118421i 0.503299 0.864112i $$-0.332120\pi$$
−0.666292 + 0.745691i $$0.732120\pi$$
$$104$$ 151769. 49312.9i 1.37594 0.447071i
$$105$$ −131287. 94147.3i −1.16212 0.833364i
$$106$$ 42612.5 58651.1i 0.368360 0.507004i
$$107$$ −22726.0 + 16511.4i −0.191895 + 0.139420i −0.679584 0.733597i $$-0.737840\pi$$
0.487690 + 0.873017i $$0.337840\pi$$
$$108$$ 33031.3 614.638i 0.272500 0.00507061i
$$109$$ 142926.i 1.15224i −0.817363 0.576122i $$-0.804565\pi$$
0.817363 0.576122i $$-0.195435\pi$$
$$110$$ 37175.7 156377.i 0.292939 1.23223i
$$111$$ 27850.8 20499.9i 0.214551 0.157922i
$$112$$ 192690. + 62608.8i 1.45149 + 0.471618i
$$113$$ 4106.24 + 5651.75i 0.0302516 + 0.0416377i 0.823875 0.566772i $$-0.191808\pi$$
−0.793623 + 0.608409i $$0.791808\pi$$
$$114$$ 1838.61 + 296457.i 0.0132504 + 2.13649i
$$115$$ 34204.5 + 105270.i 0.241178 + 0.742270i
$$116$$ −6861.53 21117.6i −0.0473452 0.145713i
$$117$$ 156047. + 209271.i 1.05388 + 1.41334i
$$118$$ −54243.0 74659.0i −0.358623 0.493603i
$$119$$ −39183.8 12731.6i −0.253653 0.0824168i
$$120$$ −86156.7 117051.i −0.546180 0.742031i
$$121$$ 143821. + 72477.5i 0.893014 + 0.450028i
$$122$$ 168369.i 1.02415i
$$123$$ −424.515 1279.47i −0.00253006 0.00762548i
$$124$$ −12499.8 + 9081.67i −0.0730046 + 0.0530410i
$$125$$ 85241.9 117325.i 0.487953 0.671609i
$$126$$ 3175.85 + 256026.i 0.0178210 + 1.43667i
$$127$$ 94688.8 30766.3i 0.520942 0.169264i −0.0367308 0.999325i $$-0.511694\pi$$
0.557673 + 0.830061i $$0.311694\pi$$
$$128$$ 181001. + 131505.i 0.976465 + 0.709443i
$$129$$ 6856.21 + 2180.80i 0.0362752 + 0.0115383i
$$130$$ −132961. + 409210.i −0.690024 + 2.12368i
$$131$$ 149193. 0.759572 0.379786 0.925074i $$-0.375998\pi$$
0.379786 + 0.925074i $$0.375998\pi$$
$$132$$ −50229.4 + 21303.1i −0.250913 + 0.106416i
$$133$$ −492103. −2.41227
$$134$$ 32955.2 101426.i 0.158548 0.487961i
$$135$$ 136145. 194913.i 0.642937 0.920464i
$$136$$ −29986.4 21786.4i −0.139020 0.101004i
$$137$$ 181680. 59031.3i 0.826999 0.268708i 0.135218 0.990816i $$-0.456826\pi$$
0.691781 + 0.722107i $$0.256826\pi$$
$$138$$ 102232. 142561.i 0.456970 0.637239i
$$139$$ 79020.3 108762.i 0.346898 0.477464i −0.599542 0.800343i $$-0.704651\pi$$
0.946440 + 0.322879i $$0.104651\pi$$
$$140$$ −73125.1 + 53128.5i −0.315316 + 0.229091i
$$141$$ 229944. 76293.2i 0.974035 0.323175i
$$142$$ 366579.i 1.52562i
$$143$$ −368085. 224440.i −1.50525 0.917825i
$$144$$ −88614.2 + 284694.i −0.356121 + 1.14412i
$$145$$ −151974. 49379.5i −0.600276 0.195041i
$$146$$ 32442.0 + 44652.5i 0.125958 + 0.173366i
$$147$$ −163016. + 1011.01i −0.622209 + 0.00385891i
$$148$$ −5978.88 18401.1i −0.0224370 0.0690541i
$$149$$ −3440.17 10587.8i −0.0126945 0.0390696i 0.944509 0.328487i $$-0.106539\pi$$
−0.957203 + 0.289417i $$0.906539\pi$$
$$150$$ 81015.3 502.452i 0.293994 0.00182334i
$$151$$ 196702. + 270737.i 0.702047 + 0.966284i 0.999932 + 0.0116825i $$0.00371873\pi$$
−0.297885 + 0.954602i $$0.596281\pi$$
$$152$$ −421045. 136806.i −1.47815 0.480282i
$$153$$ 18019.8 57893.1i 0.0622332 0.199939i
$$154$$ −162688. 390309.i −0.552781 1.32619i
$$155$$ 111192.i 0.371744i
$$156$$ 138621. 45992.9i 0.456054 0.151314i
$$157$$ −236081. + 171523.i −0.764385 + 0.555358i −0.900252 0.435369i $$-0.856618\pi$$
0.135867 + 0.990727i $$0.456618\pi$$
$$158$$ −10327.6 + 14214.7i −0.0329121 + 0.0452996i
$$159$$ −103204. + 143917.i −0.323746 + 0.451459i
$$160$$ −183647. + 59670.4i −0.567131 + 0.184272i
$$161$$ 235581. + 171160.i 0.716269 + 0.520400i
$$162$$ −376696. + 9346.79i −1.12773 + 0.0279817i
$$163$$ 153636. 472844.i 0.452924 1.39396i −0.420632 0.907231i $$-0.638192\pi$$
0.873556 0.486725i $$-0.161808\pi$$
$$164$$ −754.217 −0.00218971
$$165$$ −88442.5 + 382557.i −0.252901 + 1.09392i
$$166$$ 216838. 0.610752
$$167$$ −182773. + 562519.i −0.507133 + 1.56079i 0.290022 + 0.957020i $$0.406337\pi$$
−0.797155 + 0.603775i $$0.793663\pi$$
$$168$$ −364370. 115898.i −0.996022 0.316812i
$$169$$ 633259. + 460089.i 1.70555 + 1.23915i
$$170$$ 95046.5 30882.5i 0.252240 0.0819577i
$$171$$ −8982.62 724150.i −0.0234916 1.89382i
$$172$$ 2366.02 3256.55i 0.00609814 0.00839338i
$$173$$ −128775. + 93560.2i −0.327126 + 0.237671i −0.739210 0.673475i $$-0.764801\pi$$
0.412084 + 0.911146i $$0.364801\pi$$
$$174$$ 79753.1 + 240372.i 0.199698 + 0.601881i
$$175$$ 134481.i 0.331944i
$$176$$ −39724.9 490814.i −0.0966678 1.19436i
$$177$$ 133634. + 181553.i 0.320616 + 0.435583i
$$178$$ −197710. 64239.9i −0.467712 0.151969i
$$179$$ 56541.9 + 77823.3i 0.131898 + 0.181542i 0.869858 0.493303i $$-0.164211\pi$$
−0.737960 + 0.674845i $$0.764211\pi$$
$$180$$ −79515.6 106637.i −0.182924 0.245316i
$$181$$ 67956.6 + 209149.i 0.154183 + 0.474525i 0.998077 0.0619840i $$-0.0197428\pi$$
−0.843895 + 0.536509i $$0.819743\pi$$
$$182$$ 349788. + 1.07654e6i 0.782757 + 2.40908i
$$183$$ 2550.77 + 411286.i 0.00563047 + 0.907855i
$$184$$ 153981. + 211937.i 0.335293 + 0.461491i
$$185$$ −132425. 43027.5i −0.284473 0.0924308i
$$186$$ 141925. 104465.i 0.300799 0.221406i
$$187$$ 8078.13 + 99807.8i 0.0168930 + 0.208718i
$$188$$ 135547.i 0.279701i
$$189$$ −11636.7 625366.i −0.0236959 1.27344i
$$190$$ 965701. 701623.i 1.94070 1.41000i
$$191$$ 516292. 710614.i 1.02403 1.40945i 0.114686 0.993402i $$-0.463414\pi$$
0.909341 0.416051i $$-0.136586\pi$$
$$192$$ −248702. 178347.i −0.486885 0.349150i
$$193$$ −192372. + 62505.4i −0.371748 + 0.120788i −0.488932 0.872322i $$-0.662613\pi$$
0.117184 + 0.993110i $$0.462613\pi$$
$$194$$ −562587. 408743.i −1.07321 0.779734i
$$195$$ 318593. 1.00162e6i 0.599997 1.88633i
$$196$$ −28184.4 + 86742.6i −0.0524045 + 0.161284i
$$197$$ −8845.91 −0.0162397 −0.00811983 0.999967i $$-0.502585\pi$$
−0.00811983 + 0.999967i $$0.502585\pi$$
$$198$$ 571386. 246526.i 1.03578 0.446890i
$$199$$ −202626. −0.362712 −0.181356 0.983418i $$-0.558049\pi$$
−0.181356 + 0.983418i $$0.558049\pi$$
$$200$$ −37386.0 + 115062.i −0.0660898 + 0.203404i
$$201$$ −78965.4 + 248259.i −0.137863 + 0.433426i
$$202$$ −945877. 687220.i −1.63101 1.18500i
$$203$$ −399810. + 129906.i −0.680947 + 0.221253i
$$204$$ −27567.5 19768.9i −0.0463790 0.0332588i
$$205$$ −3190.37 + 4391.17i −0.00530220 + 0.00729785i
$$206$$ 111989. 81364.6i 0.183868 0.133588i
$$207$$ −247569. + 349792.i −0.401578 + 0.567393i
$$208$$ 1.31815e6i 2.11254i
$$209$$ 460149. + 1.10396e6i 0.728673 + 1.74818i
$$210$$ 830272. 611131.i 1.29919 0.956282i
$$211$$ 391708. + 127274.i 0.605698 + 0.196803i 0.595780 0.803148i $$-0.296843\pi$$
0.00991779 + 0.999951i $$0.496843\pi$$
$$212$$ 58239.3 + 80159.6i 0.0889973 + 0.122494i
$$213$$ 5553.65 + 895469.i 0.00838744 + 1.35239i
$$214$$ −55393.5 170484.i −0.0826846 0.254477i
$$215$$ −8951.76 27550.7i −0.0132072 0.0406477i
$$216$$ 163897. 538301.i 0.239021 0.785038i
$$217$$ 171939. + 236654.i 0.247871 + 0.341165i
$$218$$ 867420. + 281842.i 1.23620 + 0.401665i
$$219$$ −79924.8 108584.i −0.112609 0.152988i
$$220$$ 187562. + 114366.i 0.261270 + 0.159309i
$$221$$ 268047.i 0.369174i
$$222$$ 69493.9 + 209451.i 0.0946377 + 0.285234i
$$223$$ −288213. + 209399.i −0.388106 + 0.281976i −0.764679 0.644411i $$-0.777102\pi$$
0.376573 + 0.926387i $$0.377102\pi$$
$$224$$ −298592. + 410977.i −0.397611 + 0.547264i
$$225$$ −197894. + 2454.75i −0.260601 + 0.00323260i
$$226$$ −42397.8 + 13775.9i −0.0552170 + 0.0179411i
$$227$$ −825282. 599603.i −1.06301 0.772323i −0.0883680 0.996088i $$-0.528165\pi$$
−0.974643 + 0.223765i $$0.928165\pi$$
$$228$$ −386120. 122816.i −0.491910 0.156465i
$$229$$ 145954. 449201.i 0.183920 0.566046i −0.816009 0.578040i $$-0.803818\pi$$
0.999928 + 0.0119937i $$0.00381779\pi$$
$$230$$ −706337. −0.880425
$$231$$ 403322. + 950970.i 0.497304 + 1.17257i
$$232$$ −378193. −0.461311
$$233$$ 148920. 458328.i 0.179706 0.553078i −0.820111 0.572204i $$-0.806088\pi$$
0.999817 + 0.0191263i $$0.00608847\pi$$
$$234$$ −1.57779e6 + 534379.i −1.88369 + 0.637984i
$$235$$ −789173. 573368.i −0.932186 0.677273i
$$236$$ 119953. 38975.0i 0.140194 0.0455519i
$$237$$ 25012.5 34879.7i 0.0289259 0.0403368i
$$238$$ 154537. 212701.i 0.176843 0.243404i
$$239$$ −247184. + 179590.i −0.279915 + 0.203370i −0.718880 0.695134i $$-0.755345\pi$$
0.438966 + 0.898504i $$0.355345\pi$$
$$240$$ 1.13945e6 378058.i 1.27693 0.423673i
$$241$$ 181266.i 0.201036i 0.994935 + 0.100518i $$0.0320500\pi$$
−0.994935 + 0.100518i $$0.967950\pi$$
$$242$$ −723473. + 729930.i −0.794116 + 0.801203i
$$243$$ 920040. 28539.0i 0.999519 0.0310044i
$$244$$ 218850. + 71108.8i 0.235327 + 0.0764625i
$$245$$ 385808. + 531019.i 0.410635 + 0.565190i
$$246$$ 8602.24 53.3506i 0.00906304 5.62085e-5i
$$247$$ −989348. 3.04490e6i −1.03183 3.17564i
$$248$$ 81321.4 + 250281.i 0.0839606 + 0.258404i
$$249$$ −529686. + 3285.08i −0.541402 + 0.00335775i
$$250$$ 543957. + 748693.i 0.550446 + 0.757624i
$$251$$ −1.23626e6 401686.i −1.23859 0.402441i −0.384768 0.923013i $$-0.625719\pi$$
−0.853817 + 0.520573i $$0.825719\pi$$
$$252$$ −334132. 104002.i −0.331449 0.103167i
$$253$$ 163686. 688536.i 0.160772 0.676278i
$$254$$ 635337.i 0.617902i
$$255$$ −231709. + 76878.8i −0.223148 + 0.0740382i
$$256$$ −646775. + 469910.i −0.616813 + 0.448141i
$$257$$ 534229. 735304.i 0.504539 0.694439i −0.478447 0.878116i $$-0.658800\pi$$
0.982987 + 0.183678i $$0.0588002\pi$$
$$258$$ −26755.4 + 37310.0i −0.0250243 + 0.0348961i
$$259$$ −348379. + 113195.i −0.322703 + 0.104853i
$$260$$ −475749. 345652.i −0.436460 0.317107i
$$261$$ −198460. 585966.i −0.180332 0.532440i
$$262$$ −294199. + 905452.i −0.264782 + 0.814915i
$$263$$ 1.31581e6 1.17302 0.586508 0.809943i $$-0.300502\pi$$
0.586508 + 0.809943i $$0.300502\pi$$
$$264$$ 80711.9 + 925779.i 0.0712734 + 0.817519i
$$265$$ 713056. 0.623748
$$266$$ 970398. 2.98658e6i 0.840903 2.58803i
$$267$$ 483934. + 153928.i 0.415439 + 0.132142i
$$268$$ 117918. + 85672.1i 0.100286 + 0.0728622i
$$269$$ 1.04275e6 338809.i 0.878615 0.285479i 0.165233 0.986255i $$-0.447163\pi$$
0.713382 + 0.700775i $$0.247163\pi$$
$$270$$ 914461. + 1.21063e6i 0.763406 + 1.01065i
$$271$$ −1.03459e6 + 1.42399e6i −0.855749 + 1.17784i 0.126818 + 0.991926i $$0.459524\pi$$
−0.982567 + 0.185911i $$0.940476\pi$$
$$272$$ 247691. 179958.i 0.202997 0.147486i
$$273$$ −870763. 2.62444e6i −0.707120 2.13123i
$$274$$ 1.21902e6i 0.980925i
$$275$$ 301687. 125749.i 0.240561 0.100270i
$$276$$ 142128. + 193092.i 0.112307 + 0.152578i
$$277$$ −591596. 192221.i −0.463261 0.150523i 0.0680814 0.997680i $$-0.478312\pi$$
−0.531342 + 0.847157i $$0.678312\pi$$
$$278$$ 504256. + 694048.i 0.391326 + 0.538614i
$$279$$ −345107. + 257335.i −0.265426 + 0.197920i
$$280$$ 475737. + 1.46417e6i 0.362637 + 1.11608i
$$281$$ −195108. 600480.i −0.147404 0.453662i 0.849908 0.526930i $$-0.176657\pi$$
−0.997312 + 0.0732681i $$0.976657\pi$$
$$282$$ 9588.09 + 1.54598e6i 0.00717975 + 1.15766i
$$283$$ 1.28727e6 + 1.77177e6i 0.955440 + 1.31505i 0.949068 + 0.315070i $$0.102028\pi$$
0.00637161 + 0.999980i $$0.497972\pi$$
$$284$$ 476489. + 154821.i 0.350556 + 0.113903i
$$285$$ −2.34836e6 + 1.72853e6i −1.71258 + 1.26057i
$$286$$ 2.08797e6 1.79133e6i 1.50942 1.29497i
$$287$$ 14279.2i 0.0102329i
$$288$$ −610220. 431889.i −0.433516 0.306825i
$$289$$ 1.09832e6 797976.i 0.773543 0.562012i
$$290$$ 599370. 824962.i 0.418504 0.576022i
$$291$$ 1.38046e6 + 989943.i 0.955636 + 0.685295i
$$292$$ −71742.2 + 23310.4i −0.0492399 + 0.0159990i
$$293$$ −338985. 246287.i −0.230681 0.167600i 0.466440 0.884553i $$-0.345536\pi$$
−0.697122 + 0.716953i $$0.745536\pi$$
$$294$$ 315322. 991339.i 0.212758 0.668888i
$$295$$ 280487. 863250.i 0.187654 0.577539i
$$296$$ −329544. −0.218617
$$297$$ −1.39203e6 + 610864.i −0.915710 + 0.401840i
$$298$$ 71041.1 0.0463414
$$299$$ −585432. + 1.80177e6i −0.378703 + 1.16553i
$$300$$ −33562.9 + 105518.i −0.0215306 + 0.0676899i
$$301$$ −61654.7 44794.8i −0.0392239 0.0284978i
$$302$$ −2.03099e6 + 659909.i −1.28142 + 0.416358i
$$303$$ 2.32097e6 + 1.66439e6i 1.45232 + 1.04147i
$$304$$ 2.14945e6 2.95846e6i 1.33396 1.83604i
$$305$$ 1.33975e6 973387.i 0.824660 0.599150i
$$306$$ 315820. + 223525.i 0.192813 + 0.136465i
$$307$$ 1.55308e6i 0.940476i 0.882540 + 0.470238i $$0.155832\pi$$
−0.882540 + 0.470238i $$0.844168\pi$$
$$308$$ 576044. 46623.2i 0.346002 0.0280043i
$$309$$ −272330. + 200452.i −0.162256 + 0.119430i
$$310$$ −674825. 219264.i −0.398829 0.129587i
$$311$$ −1.90165e6 2.61739e6i −1.11488 1.53450i −0.814021 0.580835i $$-0.802726\pi$$
−0.300861 0.953668i $$-0.597274\pi$$
$$312$$ −15427.7 2.48756e6i −0.00897251 1.44673i
$$313$$ 7240.36 + 22283.5i 0.00417733 + 0.0128565i 0.953123 0.302582i $$-0.0978485\pi$$
−0.948946 + 0.315438i $$0.897849\pi$$
$$314$$ −575437. 1.77101e6i −0.329362 1.01367i
$$315$$ −2.01891e6 + 1.50543e6i −1.14641 + 0.854840i
$$316$$ −14114.9 19427.5i −0.00795170 0.0109446i
$$317$$ 2.62587e6 + 853196.i 1.46766 + 0.476871i 0.930400 0.366547i $$-0.119460\pi$$
0.537258 + 0.843418i $$0.319460\pi$$
$$318$$ −669920. 910142.i −0.371497 0.504710i
$$319$$ 665273. + 775441.i 0.366036 + 0.426650i
$$320$$ 1.23223e6i 0.672693i
$$321$$ 137897. + 415614.i 0.0746949 + 0.225127i
$$322$$ −1.50332e6 + 1.09223e6i −0.808003 + 0.587048i
$$323$$ −437094. + 601608.i −0.233114 + 0.320854i
$$324$$ 146944. 493587.i 0.0777661 0.261217i
$$325$$ −832104. + 270367.i −0.436988 + 0.141986i
$$326$$ 2.56674e6 + 1.86484e6i 1.33763 + 0.971848i
$$327$$ −2.12318e6 675334.i −1.09804 0.349260i
$$328$$ −3969.67 + 12217.4i −0.00203737 + 0.00627037i
$$329$$ −2.56624e6 −1.30710
$$330$$ −2.14734e6 1.29114e6i −1.08546 0.652662i
$$331$$ −1.24510e6 −0.624645 −0.312322 0.949976i $$-0.601107\pi$$
−0.312322 + 0.949976i $$0.601107\pi$$
$$332$$ −91579.3 + 281852.i −0.0455987 + 0.140338i
$$333$$ −172931. 510589.i −0.0854598 0.252325i
$$334$$ −3.05352e6 2.21851e6i −1.49773 1.08817i
$$335$$ 997592. 324137.i 0.485670 0.157804i
$$336$$ 1.84053e6 2.56660e6i 0.889396 1.24025i
$$337$$ −2102.21 + 2893.44i −0.00100833 + 0.00138784i −0.809521 0.587091i $$-0.800273\pi$$
0.808513 + 0.588479i $$0.200273\pi$$
$$338$$ −4.04104e6 + 2.93599e6i −1.92398 + 1.39786i
$$339$$ 103360. 34293.7i 0.0488485 0.0162075i
$$340$$ 136587.i 0.0640784i
$$341$$ 370122. 607006.i 0.172369 0.282688i
$$342$$ 4.41259e6 + 1.37347e6i 2.03999 + 0.634969i
$$343$$ −997091. 323974.i −0.457614 0.148688i
$$344$$ −40299.0 55466.8i −0.0183611 0.0252719i
$$345$$ 1.72542e6 10701.0i 0.780454 0.00484033i
$$346$$ −313882. 966030.i −0.140954 0.433811i
$$347$$ 10866.5 + 33443.6i 0.00484469 + 0.0149104i 0.953450 0.301552i $$-0.0975048\pi$$
−0.948605 + 0.316463i $$0.897505\pi$$
$$348$$ −346125. + 2146.65i −0.153209 + 0.000950196i
$$349$$ −1.53885e6 2.11804e6i −0.676289 0.930833i 0.323593 0.946197i $$-0.395109\pi$$
−0.999882 + 0.0153640i $$0.995109\pi$$
$$350$$ −816166. 265188.i −0.356130 0.115714i
$$351$$ 3.84608e6 1.32927e6i 1.66629 0.575898i
$$352$$ 1.20117e6 + 285554.i 0.516710 + 0.122838i
$$353$$ 3.17579e6i 1.35649i 0.734838 + 0.678243i $$0.237258\pi$$
−0.734838 + 0.678243i $$0.762742\pi$$
$$354$$ −1.36537e6 + 453016.i −0.579084 + 0.192134i
$$355$$ 2.91696e6 2.11930e6i 1.22846 0.892526i
$$356$$ 167002. 229858.i 0.0698386 0.0961246i
$$357$$ −374275. + 521922.i −0.155425 + 0.216738i
$$358$$ −583808. + 189691.i −0.240748 + 0.0782237i
$$359$$ 1.18594e6 + 861632.i 0.485652 + 0.352847i 0.803510 0.595292i $$-0.202964\pi$$
−0.317858 + 0.948138i $$0.602964\pi$$
$$360$$ −2.14590e6 + 726793.i −0.872676 + 0.295566i
$$361$$ −1.97954e6 + 6.09239e6i −0.799458 + 2.46048i
$$362$$ −1.40333e6 −0.562846
$$363$$ 1.75622e6 1.79401e6i 0.699540 0.714593i
$$364$$ −1.54704e6 −0.611997
$$365$$ −167755. + 516298.i −0.0659089 + 0.202847i
$$366$$ −2.50113e6 795552.i −0.975964 0.310432i
$$367$$ 1.80872e6 + 1.31411e6i 0.700980 + 0.509292i 0.880251 0.474508i $$-0.157374\pi$$
−0.179271 + 0.983800i $$0.557374\pi$$
$$368$$ −2.05798e6 + 668680.i −0.792178 + 0.257394i
$$369$$ −21012.5 + 260.647i −0.00803363 + 9.96521e-5i
$$370$$ 522269. 718841.i 0.198331 0.272979i
$$371$$ 1.51762e6 1.10262e6i 0.572439 0.415901i
$$372$$ 75846.5 + 228598.i 0.0284170 + 0.0856475i
$$373$$ 608995.i 0.226643i −0.993558 0.113321i $$-0.963851\pi$$
0.993558 0.113321i $$-0.0361490\pi$$
$$374$$ −621665. 147789.i −0.229814 0.0546340i
$$375$$ −1.34011e6 1.82065e6i −0.492109 0.668570i
$$376$$ −2.19569e6 713422.i −0.800941 0.260242i
$$377$$ −1.60760e6 2.21267e6i −0.582537 0.801793i
$$378$$ 3.81830e6 + 1.16256e6i 1.37449 + 0.418492i
$$379$$ 368255. + 1.13337e6i 0.131690 + 0.405299i 0.995060 0.0992711i $$-0.0316511\pi$$
−0.863371 + 0.504570i $$0.831651\pi$$
$$380$$ 504135. + 1.55157e6i 0.179097 + 0.551203i
$$381$$ −9625.32 1.55198e6i −0.00339705 0.547740i
$$382$$ 3.29463e6 + 4.53467e6i 1.15518 + 1.58996i
$$383$$ 3.43678e6 + 1.11668e6i 1.19717 + 0.388983i 0.838718 0.544566i $$-0.183306\pi$$
0.358449 + 0.933549i $$0.383306\pi$$
$$384$$ 2.80876e6 2.06742e6i 0.972046 0.715486i
$$385$$ 2.16524e6 3.55103e6i 0.744482 1.22096i
$$386$$ 1.29076e6i 0.440939i
$$387$$ 64792.0 91545.2i 0.0219910 0.0310712i
$$388$$ 768899. 558638.i 0.259292 0.188387i
$$389$$ −2.16170e6 + 2.97532e6i −0.724304 + 0.996919i 0.275066 + 0.961425i $$0.411300\pi$$
−0.999370 + 0.0354933i $$0.988700\pi$$
$$390$$ 5.45061e6 + 3.90869e6i 1.81461 + 1.30128i
$$391$$ 418495. 135977.i 0.138436 0.0449805i
$$392$$ 1.25678e6 + 913104.i 0.413089 + 0.300127i
$$393$$ 704944. 2.21627e6i 0.230236 0.723838i
$$394$$ 17443.6 53685.9i 0.00566104 0.0174229i
$$395$$ −172816. −0.0557304
$$396$$ 79122.8 + 846822.i 0.0253550 + 0.271365i
$$397$$ −3.40613e6 −1.08464 −0.542319 0.840173i $$-0.682453\pi$$
−0.542319 + 0.840173i $$0.682453\pi$$
$$398$$ 399566. 1.22974e6i 0.126439 0.389139i
$$399$$ −2.32522e6 + 7.31023e6i −0.731191 + 2.29879i
$$400$$ −808483. 587397.i −0.252651 0.183562i
$$401$$ 5.39643e6 1.75341e6i 1.67589 0.544530i 0.691783 0.722106i $$-0.256826\pi$$
0.984107 + 0.177576i $$0.0568256\pi$$
$$402$$ −1.35097e6 968794.i −0.416947 0.298997i
$$403$$ −1.11863e6 + 1.53966e6i −0.343102 + 0.472239i
$$404$$ 1.29275e6 939237.i 0.394058 0.286300i
$$405$$ −2.25216e6 2.94343e6i −0.682278 0.891694i
$$406$$ 2.68262e6i 0.807688i
$$407$$ 579694. + 675690.i 0.173465 + 0.202191i
$$408$$ −465327. + 342509.i −0.138391 + 0.101864i
$$409$$ 4.15200e6 + 1.34907e6i 1.22729 + 0.398772i 0.849734 0.527212i $$-0.176763\pi$$
0.377561 + 0.925985i $$0.376763\pi$$
$$410$$ −20358.8 28021.5i −0.00598127 0.00823251i
$$411$$ −18468.1 2.97780e6i −0.00539285 0.869542i
$$412$$ 58462.7 + 179930.i 0.0169682 + 0.0522227i
$$413$$ −737896. 2.27101e6i −0.212873 0.655155i
$$414$$ −1.63470e6 2.19227e6i −0.468746 0.628627i
$$415$$ 1.25360e6 + 1.72543e6i 0.357305 + 0.491788i
$$416$$ −3.14324e6 1.02130e6i −0.890520 0.289347i
$$417$$ −1.24230e6 1.68776e6i −0.349852 0.475304i
$$418$$ −7.60732e6 + 615713.i −2.12956 + 0.172360i
$$419$$ 5.39472e6i 1.50118i −0.660766 0.750592i $$-0.729768\pi$$
0.660766 0.750592i $$-0.270232\pi$$
$$420$$ 443708. + 1.33732e6i 0.122737 + 0.369922i
$$421$$ 4.39436e6 3.19269e6i 1.20834 0.877912i 0.213263 0.976995i $$-0.431591\pi$$
0.995079 + 0.0990824i $$0.0315907\pi$$
$$422$$ −1.54485e6 + 2.12630e6i −0.422285 + 0.581225i
$$423$$ −46843.0 3.77633e6i −0.0127290 1.02617i
$$424$$ 1.60502e6 521502.i 0.433576 0.140877i
$$425$$ 164406. + 119448.i 0.0441516 + 0.0320780i
$$426$$ −5.44556e6 1.73211e6i −1.45385 0.462435i
$$427$$ 1.34627e6 4.14339e6i 0.357324 1.09973i
$$428$$ 244994. 0.0646468
$$429$$ −5.07330e6 + 4.40745e6i −1.33091 + 1.15623i
$$430$$ 184858. 0.0482133
$$431$$ −2.26099e6 + 6.95862e6i −0.586281 + 1.80439i 0.00778166 + 0.999970i $$0.497523\pi$$
−0.594063 + 0.804419i $$0.702477\pi$$
$$432$$ 3.81045e6 + 2.66157e6i 0.982353 + 0.686165i
$$433$$ 2.49916e6 + 1.81574e6i 0.640581 + 0.465409i 0.860050 0.510210i $$-0.170432\pi$$
−0.219469 + 0.975619i $$0.570432\pi$$
$$434$$ −1.77531e6 + 576833.i −0.452428 + 0.147003i
$$435$$ −1.45163e6 + 2.02427e6i −0.367817 + 0.512916i
$$436$$ −732691. + 1.00846e6i −0.184589 + 0.254064i
$$437$$ 4.25203e6 3.08928e6i 1.06511 0.773844i
$$438$$ 816608. 270943.i 0.203389 0.0674826i
$$439$$ 4.32339e6i 1.07069i 0.844634 + 0.535344i $$0.179818\pi$$
−0.844634 + 0.535344i $$0.820182\pi$$
$$440$$ 2.83979e6 2.43634e6i 0.699285 0.599937i
$$441$$ −755240. + 2.42639e6i −0.184922 + 0.594107i
$$442$$ 1.62678e6 + 528574.i 0.396072 + 0.128692i
$$443$$ 1.74337e6 + 2.39955e6i 0.422067 + 0.580925i 0.966109 0.258133i $$-0.0831072\pi$$
−0.544043 + 0.839057i $$0.683107\pi$$
$$444$$ −301601. + 1870.51i −0.0726064 + 0.000450301i
$$445$$ −631845. 1.94462e6i −0.151255 0.465516i
$$446$$ −702505. 2.16209e6i −0.167229 0.514679i
$$447$$ −173537. + 1076.27i −0.0410794 + 0.000254772i
$$448$$ 1.90543e6 + 2.62260e6i 0.448537 + 0.617358i
$$449$$ −3.22799e6 1.04884e6i −0.755642 0.245523i −0.0942346 0.995550i $$-0.530040\pi$$
−0.661407 + 0.750027i $$0.730040\pi$$
$$450$$ 375338. 1.20586e6i 0.0873759 0.280716i
$$451$$ 32033.3 13352.0i 0.00741583 0.00309105i
$$452$$ 60928.0i 0.0140272i
$$453$$ 4.95125e6 1.64278e6i 1.13362 0.376125i
$$454$$ 5.26641e6 3.82627e6i 1.19915 0.871236i
$$455$$ −6.54406e6 + 9.00713e6i −1.48190 + 2.03966i
$$456$$ −4.02173e6 + 5.60825e6i −0.905734 + 1.26303i
$$457$$ −7.36216e6 + 2.39211e6i −1.64898 + 0.535786i −0.978518 0.206160i $$-0.933903\pi$$
−0.670460 + 0.741946i $$0.733903\pi$$
$$458$$ 2.43839e6 + 1.77160e6i 0.543175 + 0.394640i
$$459$$ −774862. 541235.i −0.171669 0.119910i
$$460$$ 298314. 918117.i 0.0657324 0.202304i
$$461$$ −4.79758e6 −1.05140 −0.525702 0.850669i $$-0.676197\pi$$
−0.525702 + 0.850669i $$0.676197\pi$$
$$462$$ −6.56678e6 + 572509.i −1.43136 + 0.124789i
$$463$$ −6.98461e6 −1.51422 −0.757111 0.653286i $$-0.773390\pi$$
−0.757111 + 0.653286i $$0.773390\pi$$
$$464$$ 965344. 2.97102e6i 0.208155 0.640636i
$$465$$ 1.65177e6 + 525388.i 0.354255 + 0.112680i
$$466$$ 2.48794e6 + 1.80759e6i 0.530731 + 0.385599i
$$467$$ −3.41250e6 + 1.10879e6i −0.724070 + 0.235264i −0.647787 0.761822i $$-0.724305\pi$$
−0.0762828 + 0.997086i $$0.524305\pi$$
$$468$$ −28239.0 2.27654e6i −0.00595985 0.480464i
$$469$$ 1.62199e6 2.23248e6i 0.340499 0.468657i
$$470$$ 5.03598e6 3.65886e6i 1.05157 0.764013i
$$471$$ 1.43249e6 + 4.31747e6i 0.297536 + 0.896761i
$$472$$ 2.14822e6i 0.443838i
$$473$$ −42838.9 + 180199.i −0.00880411 + 0.0370339i
$$474$$ 162362. + 220582.i 0.0331924 + 0.0450946i
$$475$$ 2.30846e6 + 750064.i 0.469449 + 0.152533i
$$476$$ 211208. + 290703.i 0.0427261 + 0.0588074i
$$477$$ 1.65025e6 + 2.21312e6i 0.332089 + 0.445358i
$$478$$ −602500. 1.85430e6i −0.120611 0.371203i
$$479$$ −1.77291e6 5.45644e6i −0.353059 1.08660i −0.957127 0.289670i $$-0.906454\pi$$
0.604068 0.796933i $$-0.293546\pi$$
$$480$$ 18668.1 + 3.01004e6i 0.00369825 + 0.596305i
$$481$$ −1.40080e6 1.92803e6i −0.276066 0.379973i
$$482$$ −1.10011e6 357446.i −0.215683 0.0700798i
$$483$$ 3.65573e6 2.69084e6i 0.713027 0.524832i
$$484$$ −643231. 1.24867e6i −0.124811 0.242289i
$$485$$ 6.83971e6i 1.32033i
$$486$$ −1.64106e6 + 5.64002e6i −0.315163 + 1.08315i
$$487$$ −4.64208e6 + 3.37267e6i −0.886932 + 0.644394i −0.935076 0.354446i $$-0.884669\pi$$
0.0481440 + 0.998840i $$0.484669\pi$$
$$488$$ 2.30375e6 3.17084e6i 0.437910 0.602732i
$$489$$ −6.29820e6 4.51650e6i −1.19109 0.854142i
$$490$$ −3.98355e6 + 1.29433e6i −0.749515 + 0.243532i
$$491$$ −5.85349e6 4.25281e6i −1.09575 0.796108i −0.115388 0.993321i $$-0.536811\pi$$
−0.980361 + 0.197213i $$0.936811\pi$$
$$492$$ −3563.72 + 11204.0i −0.000663729 + 0.00208669i
$$493$$ −196304. + 604163.i −0.0363758 + 0.111953i
$$494$$ 2.04305e7 3.76670
$$495$$ 5.26502e6 + 3.12143e6i 0.965799 + 0.572585i
$$496$$ −2.17374e6 −0.396738
$$497$$ 2.93115e6 9.02115e6i 0.532288 1.63822i
$$498$$ 1.02457e6 3.22115e6i 0.185127 0.582019i
$$499$$ 835139. + 606764.i 0.150144 + 0.109086i 0.660321 0.750983i $$-0.270420\pi$$
−0.510177 + 0.860069i $$0.670420\pi$$
$$500$$ −1.20291e6 + 390848.i −0.215182 + 0.0699170i
$$501$$ 7.49265e6 + 5.37305e6i 1.33365 + 0.956371i
$$502$$ 4.87567e6 6.71079e6i 0.863526 1.18854i
$$503$$ −5.81008e6 + 4.22127e6i −1.02391 + 0.743915i −0.967081 0.254469i $$-0.918099\pi$$
−0.0568298 + 0.998384i $$0.518099\pi$$
$$504$$ −3.44334e6 + 4.86512e6i −0.603814 + 0.853135i
$$505$$ 1.14996e7i 2.00657i
$$506$$ 3.85595e6 + 2.35117e6i 0.669508 + 0.408232i
$$507$$ 9.82685e6 7.23317e6i 1.69783 1.24971i
$$508$$ −825829. 268328.i −0.141981 0.0461325i
$$509$$ 3.77275e6 + 5.19275e6i 0.645452 + 0.888388i 0.998892 0.0470689i $$-0.0149880\pi$$
−0.353440 + 0.935457i $$0.614988\pi$$
$$510$$ −9661.68 1.55785e6i −0.00164485 0.265216i
$$511$$ 441326. + 1.35826e6i 0.0747665 + 0.230108i
$$512$$ 635877. + 1.95703e6i 0.107201 + 0.329930i
$$513$$ −1.07998e7 3.28821e6i −1.81184 0.551654i
$$514$$ 3.40910e6 + 4.69222e6i 0.569157 + 0.783377i
$$515$$ 1.29488e6 + 420731.i 0.215135 + 0.0699015i
$$516$$ −37196.8 50534.9i −0.00615008 0.00835540i
$$517$$ 2.39961e6 + 5.75696e6i 0.394833 + 0.947256i
$$518$$ 2.33753e6i 0.382766i
$$519$$ 781378. + 2.35504e6i 0.127334 + 0.383777i
$$520$$ −8.10313e6 + 5.88727e6i −1.31415 + 0.954785i
$$521$$ −2.10384e6 + 2.89569e6i −0.339562 + 0.467367i −0.944313 0.329047i $$-0.893272\pi$$
0.604752 + 0.796414i $$0.293272\pi$$
$$522$$ 3.94759e6 48967.3i 0.634097 0.00786557i
$$523$$ −2.51594e6 + 817478.i −0.402203 + 0.130684i −0.503131 0.864210i $$-0.667819\pi$$
0.100928 + 0.994894i $$0.467819\pi$$
$$524$$ −1.05268e6 764816.i −0.167482 0.121683i
$$525$$ 1.99773e6 + 635430.i 0.316328 + 0.100617i
$$526$$ −2.59470e6 + 7.98568e6i −0.408906 + 1.25848i
$$527$$ 442034. 0.0693313
$$528$$ −7.47879e6 1.72901e6i −1.16747 0.269906i
$$529$$ 3.32630e6 0.516800
$$530$$ −1.40611e6 + 4.32755e6i −0.217434 + 0.669194i
$$531$$ 3.32842e6 1.12730e6i 0.512273 0.173501i
$$532$$ 3.47220e6 + 2.52270e6i 0.531895 + 0.386444i
$$533$$ −88353.2 + 28707.7i −0.0134711 + 0.00437704i
$$534$$ −1.88848e6 + 2.63346e6i −0.286589 + 0.399645i
$$535$$ 1.03634e6 1.42639e6i 0.156537 0.215454i
$$536$$ 2.00842e6 1.45920e6i 0.301955 0.219383i
$$537$$ 1.42324e6 472216.i 0.212981 0.0706651i
$$538$$ 6.99656e6i 1.04215i
$$539$$ −338567. 4.18310e6i −0.0501965 0.620193i
$$540$$ −1.95982e6 + 677346.i −0.289222 + 0.0999600i
$$541$$ 4.46010e6 + 1.44917e6i 0.655166 + 0.212876i 0.617690 0.786421i $$-0.288068\pi$$
0.0374752 + 0.999298i $$0.488068\pi$$
$$542$$ −6.60209e6 9.08700e6i −0.965346 1.32869i
$$543$$ 3.42802e6 21260.4i 0.498935 0.00309437i
$$544$$ 237215. + 730073.i 0.0343673 + 0.105772i
$$545$$ 2.77211e6 + 8.53168e6i 0.399779 + 1.23039i
$$546$$ 1.76448e7 109432.i 2.53301 0.0157096i
$$547$$ −5.54735e6 7.63528e6i −0.792716 1.09108i −0.993765 0.111499i $$-0.964435\pi$$
0.201049 0.979581i $$-0.435565\pi$$
$$548$$ −1.58452e6 514842.i −0.225396 0.0732357i
$$549$$ 6.12175e6 + 1.90546e6i 0.866851 + 0.269817i
$$550$$ 168261. + 2.07891e6i 0.0237179 + 0.293042i
$$551$$ 7.58757e6i 1.06469i
$$552$$ 3.87592e6 1.28599e6i 0.541411 0.179635i
$$553$$ −367812. + 267231.i −0.0511461 + 0.0371598i
$$554$$ 2.33319e6 3.21136e6i 0.322980 0.444543i
$$555$$ −1.26489e6 + 1.76388e6i −0.174310 + 0.243073i
$$556$$ −1.11511e6 + 362321.i −0.152979 + 0.0497058i
$$557$$ 4.83554e6 + 3.51323e6i 0.660400 + 0.479809i 0.866798 0.498659i $$-0.166174\pi$$
−0.206398 + 0.978468i $$0.566174\pi$$
$$558$$ −881240. 2.60191e6i −0.119814 0.353759i
$$559$$ 153215. 471548.i 0.0207383 0.0638259i
$$560$$ −1.27166e7 −1.71356
$$561$$ 1.52082e6 + 351596.i 0.204020 + 0.0471669i
$$562$$ 4.02906e6 0.538100
$$563$$ −504183. + 1.55171e6i −0.0670374 + 0.206320i −0.978964 0.204034i $$-0.934595\pi$$
0.911926 + 0.410354i $$0.134595\pi$$
$$564$$ −2.01356e6 640466.i −0.266542 0.0847809i
$$565$$ −354732. 257728.i −0.0467498 0.0339657i
$$566$$ −1.32913e7 + 4.31862e6i −1.74393 + 0.566636i
$$567$$ −9.34486e6 2.78203e6i −1.22072 0.363416i
$$568$$ 5.01581e6 6.90367e6i 0.652334 0.897861i
$$569$$ −8.37882e6 + 6.08757e6i −1.08493 + 0.788248i −0.978536 0.206076i $$-0.933931\pi$$
−0.106395 + 0.994324i $$0.533931\pi$$
$$570$$ −5.85968e6 1.76608e7i −0.755417 2.27679i
$$571$$ 6.73836e6i 0.864896i −0.901659 0.432448i $$-0.857650\pi$$
0.901659 0.432448i $$-0.142350\pi$$
$$572$$ 1.44659e6 + 3.47055e6i 0.184865 + 0.443515i
$$573$$ −8.11673e6 1.10273e7i −1.03275 1.40307i
$$574$$ −86660.9 28157.8i −0.0109785 0.00356713i
$$575$$ −844232. 1.16199e6i −0.106486 0.146565i
$$576$$ −3.82449e6 + 2.85179e6i −0.480305 + 0.358147i
$$577$$ −3.51561e6 1.08199e7i −0.439604 1.35296i −0.888295 0.459274i $$-0.848110\pi$$
0.448691 0.893687i $$-0.351890\pi$$
$$578$$ 2.67711e6 + 8.23928e6i 0.333308 + 1.02582i
$$579$$ 19555.0 + 3.15304e6i 0.00242416 + 0.390871i
$$580$$ 819171. + 1.12749e6i 0.101112 + 0.139169i
$$581$$ 5.33617e6 + 1.73383e6i 0.655827 + 0.213091i
$$582$$ −8.73018e6 + 6.42594e6i −1.06835 + 0.786375i
$$583$$ −3.89263e6 2.37353e6i −0.474321 0.289217i
$$584$$ 1.28482e6i 0.155888i
$$585$$ −1.33738e7 9.46545e6i −1.61572 1.14354i
$$586$$ 2.16318e6 1.57164e6i 0.260225 0.189064i
$$587$$ 6.02549e6 8.29338e6i 0.721767 0.993427i −0.277696 0.960669i $$-0.589571\pi$$
0.999463 0.0327584i $$-0.0104292\pi$$
$$588$$ 1.15540e6 + 828546.i 0.137812 + 0.0988264i
$$589$$ 5.02132e6 1.63152e6i 0.596389 0.193778i
$$590$$ 4.68597e6 + 3.40456e6i 0.554204 + 0.402653i
$$591$$ −41797.4 + 131407.i −0.00492245 + 0.0154757i
$$592$$ 841165. 2.58884e6i 0.0986455 0.303600i
$$593$$ 7.38912e6 0.862891 0.431446 0.902139i $$-0.358004\pi$$
0.431446 + 0.902139i $$0.358004\pi$$
$$594$$ −962339. 9.65285e6i −0.111908 1.12251i
$$595$$ 2.58594e6 0.299451
$$596$$ −30003.5 + 92341.2i −0.00345984 + 0.0106483i
$$597$$ −957419. + 3.01002e6i −0.109943 + 0.345648i
$$598$$ −9.78056e6 7.10599e6i −1.11843 0.812590i
$$599$$ −532729. + 173094.i −0.0606651 + 0.0197113i −0.339192 0.940717i $$-0.610154\pi$$
0.278527 + 0.960428i $$0.410154\pi$$
$$600$$ 1.53261e6 + 1.09905e6i 0.173802 + 0.124635i
$$601$$ −9.61781e6 + 1.32378e7i −1.08615 + 1.49496i −0.233587 + 0.972336i $$0.575046\pi$$
−0.852564 + 0.522623i $$0.824954\pi$$
$$602$$ 393440. 285851.i 0.0442473 0.0321476i
$$603$$ 3.31479e6 + 2.34608e6i 0.371247 + 0.262754i
$$604$$ 2.91864e6i 0.325528i
$$605$$ −9.99084e6 1.53693e6i −1.10972 0.170713i
$$606$$ −1.46780e7 + 1.08039e7i −1.62363 + 1.19509i
$$607$$ 9.72739e6 + 3.16062e6i 1.07158 + 0.348177i 0.791103 0.611683i $$-0.209507\pi$$
0.280477 + 0.959861i $$0.409507\pi$$
$$608$$ 5.38932e6 + 7.41776e6i 0.591255 + 0.813793i
$$609$$ 40641.5 + 6.55303e6i 0.00444045 + 0.715976i
$$610$$ 3.26559e6 + 1.00504e7i 0.355334 + 1.09360i
$$611$$ −5.15930e6 1.58787e7i −0.559098 1.72073i
$$612$$ −423927. + 316108.i −0.0457522 + 0.0341159i
$$613$$ 2.02916e6 + 2.79289e6i 0.218104 + 0.300195i 0.904023 0.427483i $$-0.140600\pi$$
−0.685919 + 0.727678i $$0.740600\pi$$
$$614$$ −9.42566e6 3.06258e6i −1.00900 0.327844i
$$615$$ 50156.5 + 68141.7i 0.00534736 + 0.00726483i
$$616$$ 2.27665e6 9.57658e6i 0.241738 1.01685i
$$617$$ 1.64327e7i 1.73779i 0.495001 + 0.868893i $$0.335168\pi$$
−0.495001 + 0.868893i $$0.664832\pi$$
$$618$$ −679525. 2.04806e6i −0.0715705 0.215710i
$$619$$ 9.15851e6 6.65405e6i 0.960724 0.698007i 0.00740487 0.999973i $$-0.497643\pi$$
0.953319 + 0.301966i $$0.0976429\pi$$
$$620$$ 570011. 784552.i 0.0595530 0.0819677i
$$621$$ 4.02642e6 + 5.33044e6i 0.418976 + 0.554670i
$$622$$ 1.96349e7 6.37978e6i 2.03495 0.661195i
$$623$$ −4.35179e6 3.16176e6i −0.449209 0.326369i
$$624$$ 1.95812e7 + 6.22833e6i 2.01316 + 0.640339i
$$625$$ −3.59926e6 + 1.10774e7i −0.368564 + 1.13432i
$$626$$ −149517. −0.0152494
$$627$$ 1.85736e7 1.61930e6i 1.88681 0.164497i
$$628$$ 2.54504e6 0.257511
$$629$$ −171052. + 526445.i −0.0172386 + 0.0530550i
$$630$$ −5.15532e6 1.52214e7i −0.517493 1.52793i
$$631$$ −6.27841e6 4.56153e6i −0.627735 0.456076i 0.227880 0.973689i $$-0.426821\pi$$
−0.855615 + 0.517613i $$0.826821\pi$$
$$632$$ −388992. + 126391.i −0.0387390 + 0.0125871i
$$633$$ 3.74150e6 5.21748e6i 0.371139 0.517549i
$$634$$ −1.03561e7 + 1.42540e7i −1.02323 + 1.40836i
$$635$$ −5.05554e6 + 3.67306e6i −0.497546 + 0.361488i
$$636$$ 1.46596e6 486392.i 0.143708 0.0476808i
$$637$$ 1.12343e7i 1.09698i
$$638$$ −6.01804e6 + 2.50843e6i −0.585334 + 0.243978i
$$639$$ 1.33285e7 + 4.14864e6i 1.29131 + 0.401933i
$$640$$ −1.33551e7 4.33934e6i −1.28884 0.418768i
$$641$$ 8.39551e6 + 1.15554e7i 0.807053 + 1.11081i 0.991771 + 0.128022i $$0.0408627\pi$$
−0.184718 + 0.982791i $$0.559137\pi$$
$$642$$ −2.79429e6 + 17330.0i −0.267568 + 0.00165944i
$$643$$ 5.73327e6 + 1.76452e7i 0.546858 + 1.68306i 0.716531 + 0.697555i $$0.245729\pi$$
−0.169673 + 0.985500i $$0.554271\pi$$
$$644$$ −784796. 2.41535e6i −0.0745662 0.229491i
$$645$$ −451566. + 2800.59i −0.0427387 + 0.000265063i
$$646$$ −2.78925e6 3.83907e6i −0.262970 0.361947i
$$647$$ 1.26368e7 + 4.10594e6i 1.18679 + 0.385613i 0.834887 0.550422i $$-0.185533\pi$$
0.351908 + 0.936035i $$0.385533\pi$$
$$648$$ −7.22209e6 4.97821e6i −0.675655 0.465732i
$$649$$ −4.40468e6 + 3.77890e6i −0.410490 + 0.352171i
$$650$$ 5.58320e6i 0.518322i
$$651$$ 4.32793e6 1.43597e6i 0.400247 0.132798i
$$652$$ −3.50801e6 + 2.54872e6i −0.323178 + 0.234803i
$$653$$ 5.40034e6 7.43294e6i 0.495608 0.682146i −0.485802 0.874069i $$-0.661472\pi$$
0.981410 + 0.191923i $$0.0614723\pi$$
$$654$$ 8.28539e6 1.15539e7i 0.757476 1.05629i
$$655$$ −8.90576e6 + 2.89366e6i −0.811087 + 0.263538i
$$656$$ −85845.1 62370.1i −0.00778853 0.00565870i
$$657$$ −1.99068e6 + 674222.i −0.179924 + 0.0609382i
$$658$$ 5.06048e6 1.55746e7i 0.455645 1.40233i
$$659$$ −1.28416e7 −1.15188 −0.575940 0.817492i $$-0.695364\pi$$
−0.575940 + 0.817492i $$0.695364\pi$$
$$660$$ 2.58516e6 2.24587e6i 0.231009 0.200690i
$$661$$ 4.86970e6 0.433510 0.216755 0.976226i $$-0.430453\pi$$
0.216755 + 0.976226i $$0.430453\pi$$
$$662$$ 2.45526e6 7.55651e6i 0.217747 0.670157i
$$663$$ −3.98187e6 1.26654e6i −0.351806 0.111901i
$$664$$ 4.08365e6 + 2.96694e6i 0.359441 + 0.261149i
$$665$$ 2.93751e7 9.54455e6i 2.57588 0.836954i
$$666$$ 3.43978e6 42668.3i 0.300501 0.00372752i
$$667$$ 2.63906e6 3.63235e6i 0.229686 0.316135i
$$668$$ 4.17330e6 3.03208e6i 0.361858 0.262905i
$$669$$ 1.74882e6 + 5.27085e6i 0.151070 + 0.455318i
$$670$$ 6.69358e6i 0.576065i
$$671$$ −1.05539e7 + 854201.i −0.904913 + 0.0732409i
$$672$$ 4.69423e6 + 6.37750e6i 0.400997 + 0.544788i
$$673$$ −1.12009e6 363940.i −0.0953270 0.0309736i 0.260965 0.965348i $$-0.415959\pi$$
−0.356292 + 0.934375i $$0.615959\pi$$
$$674$$ −13414.9 18464.0i −0.00113746 0.00156558i
$$675$$ −898597. + 2.95134e6i −0.0759111 + 0.249321i
$$676$$ −2.10959e6 6.49264e6i −0.177554 0.546455i
$$677$$ −2.85334e6 8.78169e6i −0.239267 0.736388i −0.996527 0.0832740i $$-0.973462\pi$$
0.757260 0.653114i $$-0.226538\pi$$
$$678$$ 4309.83 + 694916.i 0.000360069 + 0.0580575i
$$679$$ −1.05764e7 1.45572e7i −0.880368 1.21172i
$$680$$ 2.21254e6 + 718898.i 0.183493 + 0.0596204i
$$681$$ −1.28067e7 + 9.42649e6i −1.05820 + 0.778901i
$$682$$ 2.95407e6 + 3.44325e6i 0.243198 + 0.283471i
$$683$$ 6.95583e6i 0.570555i −0.958445 0.285277i $$-0.907914\pi$$
0.958445 0.285277i $$-0.0920857\pi$$
$$684$$ −3.64888e6 + 5.15554e6i −0.298208 + 0.421341i
$$685$$ −9.70008e6 + 7.04752e6i −0.789858 + 0.573865i
$$686$$ 3.93241e6 5.41250e6i 0.319043 0.439124i
$$687$$ −5.98328e6 4.29066e6i −0.483668 0.346843i
$$688$$ 538602. 175002.i 0.0433807 0.0140953i
$$689$$ 9.87359e6 + 7.17358e6i 0.792368 + 0.575689i
$$690$$ −3.33749e6 + 1.04927e7i −0.266868 + 0.839006i
$$691$$ 4.35448e6 1.34017e7i 0.346930 1.06774i −0.613613 0.789607i $$-0.710284\pi$$
0.960543 0.278133i $$-0.0897156\pi$$
$$692$$ 1.38824e6 0.110204
$$693$$ 1.60325e7 1.49800e6i 1.26814 0.118489i
$$694$$ −224398. −0.0176856
$$695$$ −2.60747e6 + 8.02498e6i −0.204766 + 0.630205i
$$696$$ −1.78699e6 + 5.61810e6i −0.139829 + 0.439609i
$$697$$ 17456.7 + 12683.1i 0.00136107 + 0.000988876i
$$698$$ 1.58890e7 5.16264e6i 1.23440 0.401082i
$$699$$ −6.10485e6 4.37784e6i −0.472587 0.338897i
$$700$$ 689399. 948876.i 0.0531772 0.0731921i
$$701$$ 194322. 141184.i 0.0149358 0.0108515i −0.580292 0.814408i $$-0.697062\pi$$
0.595228 + 0.803557i $$0.297062\pi$$
$$702$$ 483116. + 2.59631e7i 0.0370006 + 1.98845i
$$703$$ 6.61153e6i 0.504561i
$$704$$ 4.10169e6 6.72685e6i 0.311912 0.511540i
$$705$$ −1.22463e7 + 9.01404e6i −0.927968 + 0.683041i
$$706$$ −1.92739e7 6.26248e6i −1.45532 0.472862i
$$707$$ −1.77821e7 2.44750e7i −1.33794 1.84151i
$$708$$ −12193.5 1.96607e6i −0.000914206 0.147406i
$$709$$ −1.28031e6 3.94038e6i −0.0956530 0.294390i 0.891770 0.452488i $$-0.149464\pi$$
−0.987423 + 0.158099i $$0.949464\pi$$
$$710$$ 7.10996e6 + 2.18822e7i 0.529324 + 1.62909i
$$711$$ −399955. 536372.i −0.0296714 0.0397917i
$$712$$ −2.84443e6 3.91503e6i −0.210279 0.289424i
$$713$$ −2.97129e6 965430.i −0.218888 0.0711209i
$$714$$ −2.42950e6 3.30068e6i −0.178350 0.242303i
$$715$$ 2.63252e7 + 6.25832e6i 1.92578 + 0.457818i
$$716$$ 838964.i 0.0611590i
$$717$$ 1.49986e6 + 4.52051e6i 0.108957 + 0.328390i
$$718$$ −7.56786e6 + 5.49837e6i −0.547850 + 0.398036i
$$719$$ 1.32128e6 1.81859e6i 0.0953178 0.131194i −0.758694 0.651447i $$-0.774162\pi$$
0.854012 + 0.520253i $$0.174162\pi$$
$$720$$ −232123. 1.87130e7i −0.0166873 1.34528i
$$721$$ 3.40652e6 1.10685e6i 0.244047 0.0792956i
$$722$$ −3.30713e7 2.40277e7i −2.36106 1.71541i
$$723$$ 2.69272e6 + 856492.i 0.191578 + 0.0609365i
$$724$$ 592684. 1.82409e6i 0.0420220 0.129330i
$$725$$ 2.07352e6 0.146508
$$726$$ 7.42472e6 + 1.41962e7i 0.522803 + 0.999612i
$$727$$ −6.02807e6 −0.423002 −0.211501 0.977378i $$-0.567835\pi$$
−0.211501 + 0.977378i $$0.567835\pi$$
$$728$$ −8.14255e6 + 2.50602e7i −0.569419 + 1.75249i
$$729$$ 3.92330e6 1.38021e7i 0.273421 0.961894i
$$730$$ −2.80262e6 2.03622e6i −0.194651 0.141422i
$$731$$ −109526. + 35587.0i −0.00758092 + 0.00246319i
$$732$$ 2.09041e6 2.91505e6i 0.144196 0.201080i
$$733$$ 3.85271e6 5.30280e6i 0.264854 0.364540i −0.655790 0.754943i $$-0.727664\pi$$
0.920644 + 0.390403i $$0.127664\pi$$
$$734$$ −1.15420e7 + 8.38578e6i −0.790756 + 0.574518i
$$735$$ 9.71130e6 3.22211e6i 0.663069 0.220000i
$$736$$ 5.42553e6i 0.369188i
$$737$$ −6.52489e6 1.55117e6i −0.442491 0.105194i
$$738$$ 39853.6 128039.i 0.00269356 0.00865370i
$$739$$ −1.33806e7 4.34761e6i −0.901288 0.292846i −0.178520 0.983936i $$-0.557131\pi$$
−0.722769 + 0.691090i $$0.757131\pi$$
$$740$$ 713795. + 982455.i 0.0479175 + 0.0659528i
$$741$$ −4.99070e7 + 309521.i −3.33900 + 0.0207083i
$$742$$ 3.69914e6 + 1.13848e7i 0.246656 + 0.759128i
$$743$$ 6.71131e6 + 2.06553e7i 0.446001 + 1.37265i 0.881383 + 0.472403i $$0.156613\pi$$
−0.435382 + 0.900246i $$0.643387\pi$$
$$744$$ 4.10220e6 25441.6i 0.271697 0.00168505i
$$745$$ 410709. + 565292.i 0.0271109 + 0.0373149i
$$746$$ 3.69600e6 + 1.20090e6i 0.243156 + 0.0790062i
$$747$$ −2.45400e6 + 7.88405e6i −0.160906 + 0.516949i
$$748$$ 454654. 745640.i 0.0297116 0.0487276i
$$749$$ 4.63836e6i 0.302107i
$$750$$ 1.36921e7 4.54292e6i 0.888829 0.294905i
$$751$$ −387022. + 281188.i −0.0250401 + 0.0181927i −0.600235 0.799824i $$-0.704926\pi$$
0.575195 + 0.818016i $$0.304926\pi$$
$$752$$ 1.12091e7 1.54279e7i 0.722810 0.994863i
$$753$$ −1.18085e7 + 1.64668e7i −0.758939 + 1.05833i
$$754$$ 1.65988e7 5.39327e6i 1.06328 0.345481i
$$755$$ −1.69928e7 1.23460e7i −1.08492 0.788240i
$$756$$ −3.12375e6 + 4.47214e6i −0.198780 + 0.284584i
$$757$$ 1.25664e6 3.86752e6i 0.0797020 0.245298i −0.903264 0.429085i $$-0.858836\pi$$
0.982966 + 0.183788i $$0.0588359\pi$$
$$758$$ −7.60464e6 −0.480735
$$759$$ −9.45484e6 5.68495e6i −0.595730 0.358197i
$$760$$ 2.77869e7 1.74504
$$761$$ 1.36555e6 4.20272e6i 0.0854762 0.263069i −0.899179 0.437582i $$-0.855835\pi$$
0.984655 + 0.174513i $$0.0558351\pi$$