Properties

Label 33.6.f.a.17.9
Level $33$
Weight $6$
Character 33.17
Analytic conductor $5.293$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,6,Mod(2,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.2");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 33.f (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.29266605383\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 33.17
Dual form 33.6.f.a.2.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.489986 - 1.50802i) q^{2} +(15.5884 - 0.0191829i) q^{3} +(23.8545 - 17.3313i) q^{4} +(-16.6412 - 5.40705i) q^{5} +(-7.66704 - 23.4983i) q^{6} +(36.5406 + 50.2938i) q^{7} +(-78.8739 - 57.3052i) q^{8} +(242.999 - 0.598063i) q^{9} +O(q^{10})\) \(q+(-0.489986 - 1.50802i) q^{2} +(15.5884 - 0.0191829i) q^{3} +(23.8545 - 17.3313i) q^{4} +(-16.6412 - 5.40705i) q^{5} +(-7.66704 - 23.4983i) q^{6} +(36.5406 + 50.2938i) q^{7} +(-78.8739 - 57.3052i) q^{8} +(242.999 - 0.598063i) q^{9} +27.7446i q^{10} +(56.2699 - 397.347i) q^{11} +(371.522 - 270.626i) q^{12} +(283.554 - 92.1323i) q^{13} +(57.9397 - 79.7472i) q^{14} +(-259.514 - 83.9682i) q^{15} +(243.801 - 750.343i) q^{16} +(-320.060 + 985.043i) q^{17} +(-119.968 - 366.155i) q^{18} +(-821.679 + 1130.94i) q^{19} +(-490.678 + 159.431i) q^{20} +(570.575 + 783.301i) q^{21} +(-626.779 + 109.838i) q^{22} +3741.39i q^{23} +(-1230.62 - 891.787i) q^{24} +(-2280.49 - 1656.87i) q^{25} +(-277.875 - 382.462i) q^{26} +(3787.97 - 13.9843i) q^{27} +(1743.31 + 566.437i) q^{28} +(-5353.85 + 3889.80i) q^{29} +(0.532222 + 432.496i) q^{30} +(-153.897 - 473.647i) q^{31} -4370.78 q^{32} +(869.538 - 6195.10i) q^{33} +1642.29 q^{34} +(-336.137 - 1034.52i) q^{35} +(5786.26 - 4225.76i) q^{36} +(219.834 - 159.719i) q^{37} +(2108.10 + 684.962i) q^{38} +(4418.40 - 1441.64i) q^{39} +(1002.70 + 1380.10i) q^{40} +(3713.69 + 2698.16i) q^{41} +(901.660 - 1244.25i) q^{42} +14178.6i q^{43} +(-5544.25 - 10453.7i) q^{44} +(-4047.03 - 1303.96i) q^{45} +(5642.09 - 1833.23i) q^{46} +(2154.98 - 2966.08i) q^{47} +(3786.09 - 11701.4i) q^{48} +(3999.40 - 12308.9i) q^{49} +(-1381.19 + 4250.86i) q^{50} +(-4970.34 + 15361.4i) q^{51} +(5167.27 - 7112.13i) q^{52} +(12551.7 - 4078.31i) q^{53} +(-1877.14 - 5705.48i) q^{54} +(-3084.87 + 6308.07i) q^{55} -6060.83i q^{56} +(-12787.0 + 17645.4i) q^{57} +(8489.21 + 6167.78i) q^{58} +(5225.12 + 7191.76i) q^{59} +(-7645.85 + 2494.69i) q^{60} +(-22984.9 - 7468.24i) q^{61} +(-638.862 + 464.160i) q^{62} +(8909.41 + 12199.5i) q^{63} +(-5660.01 - 17419.7i) q^{64} -5216.84 q^{65} +(-9768.40 + 1724.23i) q^{66} -53935.1 q^{67} +(9437.22 + 29044.8i) q^{68} +(71.7706 + 58322.4i) q^{69} +(-1395.38 + 1013.80i) q^{70} +(-9422.92 - 3061.69i) q^{71} +(-19200.6 - 13878.0i) q^{72} +(3525.13 + 4851.93i) q^{73} +(-348.575 - 253.255i) q^{74} +(-35581.0 - 25784.3i) q^{75} +41218.9i q^{76} +(22040.2 - 11689.3i) q^{77} +(-4338.97 - 5956.65i) q^{78} +(93972.6 - 30533.5i) q^{79} +(-8114.28 + 11168.3i) q^{80} +(59048.3 - 290.658i) q^{81} +(2249.22 - 6922.39i) q^{82} +(35722.1 - 109941. i) q^{83} +(27186.4 + 8796.43i) q^{84} +(10652.3 - 14661.7i) q^{85} +(21381.6 - 6947.29i) q^{86} +(-83383.6 + 60738.7i) q^{87} +(-27208.3 + 28115.8i) q^{88} -113660. i q^{89} +(16.5930 + 6741.92i) q^{90} +(14994.9 + 10894.4i) q^{91} +(64843.1 + 89248.9i) q^{92} +(-2408.10 - 7380.47i) q^{93} +(-5528.82 - 1796.42i) q^{94} +(19788.8 - 14377.4i) q^{95} +(-68133.7 + 83.8443i) q^{96} +(5216.46 + 16054.6i) q^{97} -20521.7 q^{98} +(13435.9 - 96588.7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{3} - 262 q^{4} + 15 q^{6} - 10 q^{7} + 292 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 18 q^{3} - 262 q^{4} + 15 q^{6} - 10 q^{7} + 292 q^{9} + 1854 q^{12} - 10 q^{13} - 762 q^{15} - 10122 q^{16} + 4815 q^{18} + 4460 q^{19} + 4628 q^{22} - 805 q^{24} + 13708 q^{25} + 6108 q^{27} - 28130 q^{28} - 15470 q^{30} + 4340 q^{31} - 508 q^{33} + 18732 q^{34} - 56461 q^{36} + 978 q^{37} + 23360 q^{39} + 69750 q^{40} + 60788 q^{42} - 31356 q^{45} - 52090 q^{46} + 4238 q^{48} - 58448 q^{49} - 178950 q^{51} - 14190 q^{52} + 86600 q^{55} + 266190 q^{57} + 137102 q^{58} + 284090 q^{60} - 77890 q^{61} - 120330 q^{63} - 379114 q^{64} - 323304 q^{66} + 42668 q^{67} - 271816 q^{69} + 87176 q^{70} + 343960 q^{72} + 116440 q^{73} + 326202 q^{75} + 155512 q^{78} - 350590 q^{79} - 208088 q^{81} - 606424 q^{82} - 220680 q^{84} + 665610 q^{85} + 1152974 q^{88} + 293440 q^{90} + 621014 q^{91} + 478456 q^{93} - 521270 q^{94} - 1246430 q^{96} - 1030446 q^{97} - 590000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.489986 1.50802i −0.0866180 0.266583i 0.898361 0.439258i \(-0.144759\pi\)
−0.984979 + 0.172676i \(0.944759\pi\)
\(3\) 15.5884 0.0191829i 0.999999 0.00123058i
\(4\) 23.8545 17.3313i 0.745453 0.541603i
\(5\) −16.6412 5.40705i −0.297687 0.0967242i 0.156366 0.987699i \(-0.450022\pi\)
−0.454052 + 0.890975i \(0.650022\pi\)
\(6\) −7.66704 23.4983i −0.0869460 0.266476i
\(7\) 36.5406 + 50.2938i 0.281858 + 0.387944i 0.926348 0.376668i \(-0.122930\pi\)
−0.644490 + 0.764613i \(0.722930\pi\)
\(8\) −78.8739 57.3052i −0.435721 0.316570i
\(9\) 242.999 0.598063i 0.999997 0.00246117i
\(10\) 27.7446i 0.0877362i
\(11\) 56.2699 397.347i 0.140215 0.990121i
\(12\) 371.522 270.626i 0.744786 0.542520i
\(13\) 283.554 92.1323i 0.465347 0.151201i −0.0669529 0.997756i \(-0.521328\pi\)
0.532300 + 0.846556i \(0.321328\pi\)
\(14\) 57.9397 79.7472i 0.0790053 0.108741i
\(15\) −259.514 83.9682i −0.297805 0.0963578i
\(16\) 243.801 750.343i 0.238087 0.732756i
\(17\) −320.060 + 985.043i −0.268602 + 0.826671i 0.722240 + 0.691643i \(0.243113\pi\)
−0.990842 + 0.135029i \(0.956887\pi\)
\(18\) −119.968 366.155i −0.0872739 0.266369i
\(19\) −821.679 + 1130.94i −0.522177 + 0.718715i −0.985913 0.167258i \(-0.946509\pi\)
0.463736 + 0.885974i \(0.346509\pi\)
\(20\) −490.678 + 159.431i −0.274298 + 0.0891247i
\(21\) 570.575 + 783.301i 0.282335 + 0.387597i
\(22\) −626.779 + 109.838i −0.276095 + 0.0483834i
\(23\) 3741.39i 1.47473i 0.675494 + 0.737366i \(0.263931\pi\)
−0.675494 + 0.737366i \(0.736069\pi\)
\(24\) −1230.62 891.787i −0.436110 0.316033i
\(25\) −2280.49 1656.87i −0.729755 0.530198i
\(26\) −277.875 382.462i −0.0806150 0.110957i
\(27\) 3787.97 13.9843i 0.999993 0.00369174i
\(28\) 1743.31 + 566.437i 0.420224 + 0.136539i
\(29\) −5353.85 + 3889.80i −1.18215 + 0.858880i −0.992412 0.122955i \(-0.960763\pi\)
−0.189735 + 0.981835i \(0.560763\pi\)
\(30\) 0.532222 + 432.496i 0.000107967 + 0.0877361i
\(31\) −153.897 473.647i −0.0287625 0.0885218i 0.935645 0.352943i \(-0.114819\pi\)
−0.964407 + 0.264421i \(0.914819\pi\)
\(32\) −4370.78 −0.754544
\(33\) 869.538 6195.10i 0.138997 0.990293i
\(34\) 1642.29 0.243642
\(35\) −336.137 1034.52i −0.0463817 0.142748i
\(36\) 5786.26 4225.76i 0.744118 0.543437i
\(37\) 219.834 159.719i 0.0263992 0.0191802i −0.574507 0.818499i \(-0.694806\pi\)
0.600907 + 0.799319i \(0.294806\pi\)
\(38\) 2108.10 + 684.962i 0.236827 + 0.0769498i
\(39\) 4418.40 1441.64i 0.465161 0.151773i
\(40\) 1002.70 + 1380.10i 0.0990883 + 0.136383i
\(41\) 3713.69 + 2698.16i 0.345022 + 0.250673i 0.746778 0.665074i \(-0.231600\pi\)
−0.401756 + 0.915747i \(0.631600\pi\)
\(42\) 901.660 1244.25i 0.0788714 0.108839i
\(43\) 14178.6i 1.16939i 0.811252 + 0.584697i \(0.198787\pi\)
−0.811252 + 0.584697i \(0.801213\pi\)
\(44\) −5544.25 10453.7i −0.431729 0.814030i
\(45\) −4047.03 1303.96i −0.297924 0.0959913i
\(46\) 5642.09 1833.23i 0.393138 0.127738i
\(47\) 2154.98 2966.08i 0.142298 0.195857i −0.731919 0.681391i \(-0.761375\pi\)
0.874217 + 0.485535i \(0.161375\pi\)
\(48\) 3786.09 11701.4i 0.237185 0.733049i
\(49\) 3999.40 12308.9i 0.237960 0.732366i
\(50\) −1381.19 + 4250.86i −0.0781318 + 0.240465i
\(51\) −4970.34 + 15361.4i −0.267584 + 0.827001i
\(52\) 5167.27 7112.13i 0.265004 0.364747i
\(53\) 12551.7 4078.31i 0.613782 0.199430i 0.0144044 0.999896i \(-0.495415\pi\)
0.599378 + 0.800466i \(0.295415\pi\)
\(54\) −1877.14 5705.48i −0.0876016 0.266261i
\(55\) −3084.87 + 6308.07i −0.137509 + 0.281183i
\(56\) 6060.83i 0.258263i
\(57\) −12787.0 + 17645.4i −0.521293 + 0.719358i
\(58\) 8489.21 + 6167.78i 0.331358 + 0.240746i
\(59\) 5225.12 + 7191.76i 0.195419 + 0.268971i 0.895470 0.445122i \(-0.146840\pi\)
−0.700051 + 0.714093i \(0.746840\pi\)
\(60\) −7645.85 + 2494.69i −0.274188 + 0.0894621i
\(61\) −22984.9 7468.24i −0.790893 0.256977i −0.114409 0.993434i \(-0.536497\pi\)
−0.676484 + 0.736457i \(0.736497\pi\)
\(62\) −638.862 + 464.160i −0.0211071 + 0.0153352i
\(63\) 8909.41 + 12199.5i 0.282812 + 0.387249i
\(64\) −5660.01 17419.7i −0.172730 0.531608i
\(65\) −5216.84 −0.153152
\(66\) −9768.40 + 1724.23i −0.276035 + 0.0487231i
\(67\) −53935.1 −1.46786 −0.733929 0.679226i \(-0.762316\pi\)
−0.733929 + 0.679226i \(0.762316\pi\)
\(68\) 9437.22 + 29044.8i 0.247498 + 0.761720i
\(69\) 71.7706 + 58322.4i 0.00181478 + 1.47473i
\(70\) −1395.38 + 1013.80i −0.0340367 + 0.0247291i
\(71\) −9422.92 3061.69i −0.221840 0.0720802i 0.195988 0.980606i \(-0.437209\pi\)
−0.417828 + 0.908526i \(0.637209\pi\)
\(72\) −19200.6 13878.0i −0.436499 0.315496i
\(73\) 3525.13 + 4851.93i 0.0774226 + 0.106563i 0.845972 0.533228i \(-0.179021\pi\)
−0.768549 + 0.639791i \(0.779021\pi\)
\(74\) −348.575 253.255i −0.00739975 0.00537623i
\(75\) −35581.0 25784.3i −0.730407 0.529300i
\(76\) 41218.9i 0.818582i
\(77\) 22040.2 11689.3i 0.423632 0.224678i
\(78\) −4338.97 5956.65i −0.0807514 0.110858i
\(79\) 93972.6 30533.5i 1.69408 0.550439i 0.706520 0.707693i \(-0.250264\pi\)
0.987558 + 0.157254i \(0.0502640\pi\)
\(80\) −8114.28 + 11168.3i −0.141751 + 0.195103i
\(81\) 59048.3 290.658i 0.999988 0.00492232i
\(82\) 2249.22 6922.39i 0.0369400 0.113690i
\(83\) 35722.1 109941.i 0.569170 1.75173i −0.0860541 0.996290i \(-0.527426\pi\)
0.655224 0.755435i \(-0.272574\pi\)
\(84\) 27186.4 + 8796.43i 0.420391 + 0.136022i
\(85\) 10652.3 14661.7i 0.159918 0.220109i
\(86\) 21381.6 6947.29i 0.311741 0.101291i
\(87\) −83383.6 + 60738.7i −1.18109 + 0.860334i
\(88\) −27208.3 + 28115.8i −0.374537 + 0.387029i
\(89\) 113660.i 1.52102i −0.649328 0.760509i \(-0.724950\pi\)
0.649328 0.760509i \(-0.275050\pi\)
\(90\) 16.5930 + 6741.92i 0.000215933 + 0.0877359i
\(91\) 14994.9 + 10894.4i 0.189819 + 0.137912i
\(92\) 64843.1 + 89248.9i 0.798720 + 1.09934i
\(93\) −2408.10 7380.47i −0.0288714 0.0884864i
\(94\) −5528.82 1796.42i −0.0645376 0.0209695i
\(95\) 19788.8 14377.4i 0.224962 0.163445i
\(96\) −68133.7 + 83.8443i −0.754543 + 0.000928529i
\(97\) 5216.46 + 16054.6i 0.0562920 + 0.173249i 0.975249 0.221108i \(-0.0709674\pi\)
−0.918957 + 0.394357i \(0.870967\pi\)
\(98\) −20521.7 −0.215848
\(99\) 13435.9 96588.7i 0.137778 0.990463i
\(100\) −83115.6 −0.831156
\(101\) 13585.4 + 41811.5i 0.132516 + 0.407842i 0.995195 0.0979089i \(-0.0312154\pi\)
−0.862679 + 0.505751i \(0.831215\pi\)
\(102\) 25600.7 31.5039i 0.243642 0.000299822i
\(103\) 111288. 80855.6i 1.03361 0.750960i 0.0645807 0.997912i \(-0.479429\pi\)
0.969028 + 0.246952i \(0.0794290\pi\)
\(104\) −27644.7 8982.30i −0.250627 0.0814337i
\(105\) −5259.70 16120.2i −0.0465573 0.142691i
\(106\) −12300.3 16930.0i −0.106329 0.146350i
\(107\) −85504.2 62122.4i −0.721985 0.524553i 0.165033 0.986288i \(-0.447227\pi\)
−0.887018 + 0.461736i \(0.847227\pi\)
\(108\) 90117.8 65984.1i 0.743449 0.544352i
\(109\) 203698.i 1.64218i 0.570799 + 0.821090i \(0.306634\pi\)
−0.570799 + 0.821090i \(0.693366\pi\)
\(110\) 11024.2 + 1561.19i 0.0868695 + 0.0123019i
\(111\) 3423.81 2493.99i 0.0263756 0.0192126i
\(112\) 46646.2 15156.3i 0.351375 0.114169i
\(113\) −44187.0 + 60818.1i −0.325535 + 0.448061i −0.940147 0.340769i \(-0.889313\pi\)
0.614612 + 0.788830i \(0.289313\pi\)
\(114\) 32875.1 + 10637.1i 0.236922 + 0.0766583i
\(115\) 20229.9 62261.1i 0.142642 0.439008i
\(116\) −60298.2 + 185579.i −0.416063 + 1.28051i
\(117\) 68848.3 22557.7i 0.464974 0.152345i
\(118\) 8285.09 11403.5i 0.0547763 0.0753930i
\(119\) −61236.7 + 19897.0i −0.396410 + 0.128801i
\(120\) 15657.1 + 21494.4i 0.0992560 + 0.136261i
\(121\) −154718. 44717.4i −0.960679 0.277660i
\(122\) 38321.0i 0.233097i
\(123\) 57942.5 + 41988.8i 0.345330 + 0.250248i
\(124\) −11880.1 8631.37i −0.0693848 0.0504110i
\(125\) 61131.2 + 84139.9i 0.349936 + 0.481645i
\(126\) 14031.6 19413.2i 0.0787374 0.108936i
\(127\) −194474. 63188.4i −1.06992 0.347639i −0.279464 0.960156i \(-0.590157\pi\)
−0.790457 + 0.612517i \(0.790157\pi\)
\(128\) −136649. + 99281.5i −0.737195 + 0.535603i
\(129\) 271.986 + 221022.i 0.00143904 + 1.16939i
\(130\) 2556.17 + 7867.10i 0.0132658 + 0.0408278i
\(131\) −357684. −1.82105 −0.910523 0.413459i \(-0.864320\pi\)
−0.910523 + 0.413459i \(0.864320\pi\)
\(132\) −86626.8 162851.i −0.432731 0.813498i
\(133\) −86904.0 −0.426001
\(134\) 26427.4 + 81335.2i 0.127143 + 0.391306i
\(135\) −63111.9 20249.0i −0.298042 0.0956246i
\(136\) 81692.5 59353.1i 0.378735 0.275167i
\(137\) 342772. + 111373.i 1.56029 + 0.506967i 0.956884 0.290471i \(-0.0938118\pi\)
0.603401 + 0.797438i \(0.293812\pi\)
\(138\) 87916.2 28685.4i 0.392981 0.128222i
\(139\) 94716.6 + 130366.i 0.415805 + 0.572306i 0.964622 0.263636i \(-0.0849219\pi\)
−0.548818 + 0.835942i \(0.684922\pi\)
\(140\) −25948.1 18852.4i −0.111888 0.0812916i
\(141\) 33535.9 46277.9i 0.142057 0.196031i
\(142\) 15710.1i 0.0653822i
\(143\) −20652.9 117854.i −0.0844581 0.481951i
\(144\) 58794.7 182479.i 0.236283 0.733340i
\(145\) 110127. 35782.4i 0.434984 0.141335i
\(146\) 5589.54 7693.34i 0.0217017 0.0298698i
\(147\) 62108.3 191953.i 0.237059 0.732659i
\(148\) 2475.90 7620.03i 0.00929134 0.0285958i
\(149\) 97292.1 299434.i 0.359014 1.10493i −0.594631 0.803999i \(-0.702702\pi\)
0.953645 0.300934i \(-0.0972983\pi\)
\(150\) −21449.0 + 66290.8i −0.0778359 + 0.240561i
\(151\) 97304.5 133928.i 0.347289 0.478002i −0.599264 0.800552i \(-0.704540\pi\)
0.946552 + 0.322550i \(0.104540\pi\)
\(152\) 129618. 42115.4i 0.455047 0.147854i
\(153\) −77185.2 + 239556.i −0.266566 + 0.827330i
\(154\) −28427.0 27509.5i −0.0965895 0.0934720i
\(155\) 8714.17i 0.0291338i
\(156\) 80413.2 110966.i 0.264555 0.365073i
\(157\) 337940. + 245528.i 1.09419 + 0.794972i 0.980101 0.198499i \(-0.0636066\pi\)
0.114084 + 0.993471i \(0.463607\pi\)
\(158\) −92090.4 126752.i −0.293475 0.403934i
\(159\) 195584. 63815.2i 0.613536 0.200185i
\(160\) 72735.0 + 23633.0i 0.224617 + 0.0729826i
\(161\) −188168. + 136712.i −0.572113 + 0.415665i
\(162\) −29371.1 88903.6i −0.0879292 0.266153i
\(163\) −113929. 350638.i −0.335866 1.03369i −0.966294 0.257441i \(-0.917121\pi\)
0.630429 0.776247i \(-0.282879\pi\)
\(164\) 135351. 0.392963
\(165\) −47967.4 + 98392.2i −0.137163 + 0.281352i
\(166\) −183297. −0.516280
\(167\) −115290. 354827.i −0.319891 0.984523i −0.973694 0.227858i \(-0.926828\pi\)
0.653803 0.756664i \(-0.273172\pi\)
\(168\) −116.264 94479.0i −0.000317814 0.258263i
\(169\) −228468. + 165992.i −0.615330 + 0.447064i
\(170\) −27329.6 8879.94i −0.0725290 0.0235661i
\(171\) −198991. + 275310.i −0.520407 + 0.719998i
\(172\) 245733. + 338223.i 0.633348 + 0.871729i
\(173\) 434553. + 315721.i 1.10389 + 0.802026i 0.981691 0.190479i \(-0.0610042\pi\)
0.122203 + 0.992505i \(0.461004\pi\)
\(174\) 132452. + 95983.2i 0.331654 + 0.240338i
\(175\) 175237.i 0.432545i
\(176\) −284428. 139095.i −0.692134 0.338478i
\(177\) 81589.5 + 112008.i 0.195750 + 0.268730i
\(178\) −171402. + 55692.0i −0.405477 + 0.131748i
\(179\) 38232.3 52622.3i 0.0891863 0.122754i −0.762092 0.647468i \(-0.775828\pi\)
0.851279 + 0.524714i \(0.175828\pi\)
\(180\) −119139. + 39035.1i −0.274077 + 0.0897995i
\(181\) −122804. + 377951.i −0.278622 + 0.857509i 0.709617 + 0.704588i \(0.248868\pi\)
−0.988238 + 0.152921i \(0.951132\pi\)
\(182\) 9081.74 27950.7i 0.0203231 0.0625482i
\(183\) −358442. 115977.i −0.791209 0.256003i
\(184\) 214401. 295098.i 0.466855 0.642571i
\(185\) −4521.91 + 1469.26i −0.00971388 + 0.00315623i
\(186\) −9949.96 + 7247.79i −0.0210882 + 0.0153611i
\(187\) 373394. + 182603.i 0.780843 + 0.381860i
\(188\) 108103.i 0.223071i
\(189\) 139118. + 190000.i 0.283288 + 0.386901i
\(190\) −31377.6 22797.2i −0.0630574 0.0458139i
\(191\) 183963. + 253204.i 0.364878 + 0.502212i 0.951500 0.307649i \(-0.0995423\pi\)
−0.586621 + 0.809861i \(0.699542\pi\)
\(192\) −88565.0 271438.i −0.173384 0.531395i
\(193\) −429280. 139482.i −0.829559 0.269540i −0.136699 0.990613i \(-0.543649\pi\)
−0.692860 + 0.721072i \(0.743649\pi\)
\(194\) 21654.7 15733.1i 0.0413093 0.0300130i
\(195\) −81322.4 + 100.074i −0.153152 + 0.000188467i
\(196\) −117925. 362937.i −0.219264 0.674825i
\(197\) 404242. 0.742123 0.371062 0.928608i \(-0.378994\pi\)
0.371062 + 0.928608i \(0.378994\pi\)
\(198\) −152241. + 27065.4i −0.275975 + 0.0490628i
\(199\) −293738. −0.525808 −0.262904 0.964822i \(-0.584680\pi\)
−0.262904 + 0.964822i \(0.584680\pi\)
\(200\) 84923.5 + 261368.i 0.150125 + 0.462037i
\(201\) −840764. + 1034.63i −1.46786 + 0.00180632i
\(202\) 56396.0 40974.1i 0.0972455 0.0706530i
\(203\) −391266. 127130.i −0.666395 0.216525i
\(204\) 147669. + 452582.i 0.248435 + 0.761415i
\(205\) −47211.2 64980.7i −0.0784622 0.107994i
\(206\) −176462. 128207.i −0.289722 0.210496i
\(207\) 2237.59 + 909154.i 0.00362956 + 1.47473i
\(208\) 235225.i 0.376985i
\(209\) 403141. + 390130.i 0.638398 + 0.617794i
\(210\) −21732.4 + 15830.4i −0.0340063 + 0.0247710i
\(211\) −298266. + 96912.5i −0.461209 + 0.149856i −0.530400 0.847748i \(-0.677958\pi\)
0.0691910 + 0.997603i \(0.477958\pi\)
\(212\) 228733. 314824.i 0.349534 0.481092i
\(213\) −146947. 47546.3i −0.221928 0.0718071i
\(214\) −51786.1 + 159381.i −0.0772998 + 0.237904i
\(215\) 76664.1 235948.i 0.113109 0.348113i
\(216\) −299573. 215968.i −0.436887 0.314959i
\(217\) 18198.0 25047.4i 0.0262346 0.0361088i
\(218\) 307181. 99809.1i 0.437777 0.142242i
\(219\) 55044.4 + 75566.4i 0.0775537 + 0.106468i
\(220\) 35739.0 + 203941.i 0.0497836 + 0.284084i
\(221\) 308801.i 0.425302i
\(222\) −5438.60 3941.16i −0.00740636 0.00536712i
\(223\) 577181. + 419346.i 0.777230 + 0.564691i 0.904146 0.427223i \(-0.140508\pi\)
−0.126916 + 0.991913i \(0.540508\pi\)
\(224\) −159711. 219823.i −0.212674 0.292721i
\(225\) −555147. 401254.i −0.731058 0.528401i
\(226\) 113366. + 36834.8i 0.147643 + 0.0479720i
\(227\) 914088. 664124.i 1.17740 0.855430i 0.185523 0.982640i \(-0.440602\pi\)
0.991876 + 0.127210i \(0.0406022\pi\)
\(228\) 790.697 + 642538.i 0.00100733 + 0.818581i
\(229\) 17777.3 + 54713.0i 0.0224015 + 0.0689448i 0.961632 0.274342i \(-0.0884599\pi\)
−0.939231 + 0.343286i \(0.888460\pi\)
\(230\) −103803. −0.129387
\(231\) 343349. 182640.i 0.423356 0.225199i
\(232\) 645186. 0.786982
\(233\) −111987. 344662.i −0.135139 0.415914i 0.860473 0.509496i \(-0.170168\pi\)
−0.995612 + 0.0935822i \(0.970168\pi\)
\(234\) −67752.1 92771.7i −0.0808878 0.110758i
\(235\) −51899.2 + 37707.0i −0.0613043 + 0.0445402i
\(236\) 249285. + 80997.7i 0.291351 + 0.0946657i
\(237\) 1.46430e6 477773.i 1.69340 0.552524i
\(238\) 60010.2 + 82597.0i 0.0686725 + 0.0945195i
\(239\) −1.05823e6 768852.i −1.19836 0.870658i −0.204236 0.978922i \(-0.565471\pi\)
−0.994122 + 0.108263i \(0.965471\pi\)
\(240\) −126275. + 174253.i −0.141510 + 0.195277i
\(241\) 1.51255e6i 1.67751i −0.544507 0.838756i \(-0.683283\pi\)
0.544507 0.838756i \(-0.316717\pi\)
\(242\) 8375.06 + 255229.i 0.00919283 + 0.280151i
\(243\) 920465. 5663.62i 0.999981 0.00615288i
\(244\) −677727. + 220207.i −0.728753 + 0.236786i
\(245\) −133109. + 183209.i −0.141675 + 0.194999i
\(246\) 34929.0 107952.i 0.0368001 0.113735i
\(247\) −128794. + 396387.i −0.134324 + 0.413406i
\(248\) −15004.0 + 46177.5i −0.0154909 + 0.0476762i
\(249\) 554743. 1.71450e6i 0.567014 1.75242i
\(250\) 96931.3 133415.i 0.0980876 0.135006i
\(251\) −1.72856e6 + 561644.i −1.73181 + 0.562700i −0.993710 0.111988i \(-0.964278\pi\)
−0.738103 + 0.674688i \(0.764278\pi\)
\(252\) 423963. + 136601.i 0.420559 + 0.135504i
\(253\) 1.48663e6 + 210528.i 1.46016 + 0.206780i
\(254\) 324232.i 0.315335i
\(255\) 165772. 228757.i 0.159647 0.220305i
\(256\) −257505. 187088.i −0.245576 0.178421i
\(257\) −905.081 1245.74i −0.000854781 0.00117650i 0.808589 0.588373i \(-0.200231\pi\)
−0.809444 + 0.587197i \(0.800231\pi\)
\(258\) 333172. 108708.i 0.311616 0.101674i
\(259\) 16065.7 + 5220.07i 0.0148817 + 0.00483534i
\(260\) −124445. + 90414.6i −0.114168 + 0.0829479i
\(261\) −1.29866e6 + 948421.i −1.18003 + 0.861787i
\(262\) 175260. + 539394.i 0.157735 + 0.485460i
\(263\) 1.49553e6 1.33324 0.666618 0.745399i \(-0.267741\pi\)
0.666618 + 0.745399i \(0.267741\pi\)
\(264\) −423596. + 438803.i −0.374060 + 0.387489i
\(265\) −230927. −0.202004
\(266\) 42581.7 + 131053.i 0.0368994 + 0.113565i
\(267\) −2180.34 1.77179e6i −0.00187174 1.52102i
\(268\) −1.28659e6 + 934766.i −1.09422 + 0.794997i
\(269\) −1.14371e6 371613.i −0.963683 0.313119i −0.215420 0.976522i \(-0.569112\pi\)
−0.748263 + 0.663402i \(0.769112\pi\)
\(270\) 387.989 + 105096.i 0.000323899 + 0.0877356i
\(271\) −485938. 668837.i −0.401937 0.553219i 0.559292 0.828971i \(-0.311073\pi\)
−0.961229 + 0.275752i \(0.911073\pi\)
\(272\) 661089. + 480309.i 0.541798 + 0.393639i
\(273\) 233956. + 169540.i 0.189989 + 0.137678i
\(274\) 571479.i 0.459858i
\(275\) −786675. + 812912.i −0.627283 + 0.648204i
\(276\) 1.01252e6 + 1.39001e6i 0.800072 + 1.09836i
\(277\) −469980. + 152706.i −0.368027 + 0.119579i −0.487191 0.873295i \(-0.661979\pi\)
0.119164 + 0.992875i \(0.461979\pi\)
\(278\) 150185. 206712.i 0.116551 0.160418i
\(279\) −37680.2 115004.i −0.0289803 0.0884508i
\(280\) −32771.2 + 100859.i −0.0249803 + 0.0768814i
\(281\) −643997. + 1.98202e6i −0.486539 + 1.49741i 0.343200 + 0.939262i \(0.388489\pi\)
−0.829739 + 0.558151i \(0.811511\pi\)
\(282\) −86220.1 27897.4i −0.0645633 0.0208901i
\(283\) 563716. 775888.i 0.418402 0.575881i −0.546840 0.837237i \(-0.684170\pi\)
0.965243 + 0.261356i \(0.0841695\pi\)
\(284\) −277842. + 90276.4i −0.204410 + 0.0664169i
\(285\) 308200. 224501.i 0.224761 0.163721i
\(286\) −167606. + 88891.6i −0.121164 + 0.0642607i
\(287\) 285368.i 0.204503i
\(288\) −1.06210e6 + 2614.00i −0.754541 + 0.00185706i
\(289\) 280817. + 204026.i 0.197779 + 0.143695i
\(290\) −107921. 148541.i −0.0753549 0.103717i
\(291\) 81624.5 + 250166.i 0.0565051 + 0.173179i
\(292\) 168180. + 54645.1i 0.115430 + 0.0375055i
\(293\) −810050. + 588536.i −0.551243 + 0.400501i −0.828243 0.560368i \(-0.810660\pi\)
0.277001 + 0.960870i \(0.410660\pi\)
\(294\) −319901. + 393.666i −0.215848 + 0.000265619i
\(295\) −48066.0 147932.i −0.0321575 0.0989707i
\(296\) −26491.9 −0.0175745
\(297\) 207592. 1.50593e6i 0.136559 0.990632i
\(298\) −499225. −0.325653
\(299\) 344702. + 1.06088e6i 0.222980 + 0.686262i
\(300\) −1.29564e6 + 1594.40i −0.831155 + 0.00102281i
\(301\) −713093. + 518093.i −0.453660 + 0.329603i
\(302\) −249644. 81114.3i −0.157509 0.0511776i
\(303\) 212577. + 651516.i 0.133018 + 0.407679i
\(304\) 648269. + 892266.i 0.402320 + 0.553746i
\(305\) 342114. + 248561.i 0.210582 + 0.152997i
\(306\) 399075. 982.193i 0.243641 0.000599644i
\(307\) 1.39135e6i 0.842541i −0.906935 0.421271i \(-0.861584\pi\)
0.906935 0.421271i \(-0.138416\pi\)
\(308\) 323168. 660827.i 0.194112 0.396928i
\(309\) 1.73326e6 1.26255e6i 1.03268 0.752232i
\(310\) 13141.2 4269.82i 0.00776657 0.00252351i
\(311\) 64585.2 88893.9i 0.0378645 0.0521160i −0.789665 0.613538i \(-0.789746\pi\)
0.827529 + 0.561422i \(0.189746\pi\)
\(312\) −431110. 139490.i −0.250727 0.0811252i
\(313\) −639008. + 1.96666e6i −0.368676 + 1.13467i 0.578970 + 0.815349i \(0.303455\pi\)
−0.947647 + 0.319321i \(0.896545\pi\)
\(314\) 204675. 629926.i 0.117150 0.360550i
\(315\) −82299.8 251188.i −0.0467329 0.142634i
\(316\) 1.71248e6 2.35703e6i 0.964736 1.32785i
\(317\) 1.77800e6 577708.i 0.993767 0.322894i 0.233395 0.972382i \(-0.425017\pi\)
0.760372 + 0.649488i \(0.225017\pi\)
\(318\) −192068. 263676.i −0.106509 0.146219i
\(319\) 1.24434e6 + 2.34622e6i 0.684641 + 1.29090i
\(320\) 320489.i 0.174960i
\(321\) −1.33407e6 966752.i −0.722630 0.523664i
\(322\) 298365. + 216775.i 0.160364 + 0.116512i
\(323\) −851042. 1.17136e6i −0.453884 0.624717i
\(324\) 1.40353e6 1.03032e6i 0.742778 0.545266i
\(325\) −799292. 259706.i −0.419756 0.136387i
\(326\) −472945. + 343615.i −0.246471 + 0.179072i
\(327\) 3907.52 + 3.17534e6i 0.00202084 + 1.64218i
\(328\) −138295. 425628.i −0.0709777 0.218447i
\(329\) 227920. 0.116089
\(330\) 171881. + 24125.0i 0.0868845 + 0.0121950i
\(331\) −2.00575e6 −1.00625 −0.503127 0.864213i \(-0.667817\pi\)
−0.503127 + 0.864213i \(0.667817\pi\)
\(332\) −1.05329e6 3.24171e6i −0.524451 1.61409i
\(333\) 53324.0 38943.1i 0.0263519 0.0192451i
\(334\) −478596. + 347721.i −0.234749 + 0.170555i
\(335\) 897543. + 291630.i 0.436962 + 0.141977i
\(336\) 726851. 237157.i 0.351234 0.114601i
\(337\) 193113. + 265798.i 0.0926270 + 0.127490i 0.852815 0.522213i \(-0.174893\pi\)
−0.760188 + 0.649703i \(0.774893\pi\)
\(338\) 362265. + 263201.i 0.172478 + 0.125313i
\(339\) −687640. + 948908.i −0.324984 + 0.448461i
\(340\) 534367.i 0.250693i
\(341\) −196862. + 34498.5i −0.0916803 + 0.0160663i
\(342\) 512676. + 165185.i 0.237016 + 0.0763667i
\(343\) 1.75890e6 571500.i 0.807244 0.262289i
\(344\) 812506. 1.11832e6i 0.370195 0.509530i
\(345\) 314158. 970942.i 0.142102 0.439183i
\(346\) 263189. 810014.i 0.118189 0.363749i
\(347\) −93590.8 + 288043.i −0.0417263 + 0.128420i −0.969750 0.244102i \(-0.921507\pi\)
0.928023 + 0.372522i \(0.121507\pi\)
\(348\) −936395. + 2.89404e6i −0.414487 + 1.28102i
\(349\) 2.12328e6 2.92244e6i 0.933133 1.28435i −0.0254926 0.999675i \(-0.508115\pi\)
0.958625 0.284672i \(-0.0918846\pi\)
\(350\) −264261. + 85863.7i −0.115309 + 0.0374662i
\(351\) 1.07281e6 352959.i 0.464786 0.152917i
\(352\) −245944. + 1.73672e6i −0.105798 + 0.747090i
\(353\) 3303.03i 0.00141083i 1.00000 0.000705417i \(0.000224541\pi\)
−1.00000 0.000705417i \(0.999775\pi\)
\(354\) 128933. 177921.i 0.0546834 0.0754604i
\(355\) 140254. + 101900.i 0.0590669 + 0.0429146i
\(356\) −1.96988e6 2.71131e6i −0.823789 1.13385i
\(357\) −954203. + 311338.i −0.396251 + 0.129289i
\(358\) −98088.8 31871.0i −0.0404494 0.0131428i
\(359\) 1.82317e6 1.32461e6i 0.746606 0.542441i −0.148167 0.988962i \(-0.547337\pi\)
0.894773 + 0.446521i \(0.147337\pi\)
\(360\) 244481. + 334764.i 0.0994236 + 0.136139i
\(361\) 161279. + 496365.i 0.0651342 + 0.200463i
\(362\) 630130. 0.252731
\(363\) −2.41268e6 694106.i −0.961020 0.276477i
\(364\) 546511. 0.216195
\(365\) −32427.7 99802.3i −0.0127404 0.0392111i
\(366\) 735.108 + 597365.i 0.000286846 + 0.233097i
\(367\) −766396. + 556820.i −0.297022 + 0.215799i −0.726308 0.687370i \(-0.758765\pi\)
0.429286 + 0.903169i \(0.358765\pi\)
\(368\) 2.80732e6 + 912154.i 1.08062 + 0.351114i
\(369\) 904039. + 653429.i 0.345638 + 0.249823i
\(370\) 4431.34 + 6099.22i 0.00168279 + 0.00231617i
\(371\) 663761. + 482251.i 0.250367 + 0.181902i
\(372\) −185357. 134322.i −0.0694468 0.0503256i
\(373\) 572267.i 0.212974i −0.994314 0.106487i \(-0.966040\pi\)
0.994314 0.106487i \(-0.0339603\pi\)
\(374\) 92411.5 652559.i 0.0341623 0.241235i
\(375\) 954555. + 1.31044e6i 0.350528 + 0.481214i
\(376\) −339944. + 110454.i −0.124004 + 0.0402915i
\(377\) −1.15973e6 + 1.59623e6i −0.420246 + 0.578419i
\(378\) 218359. 302890.i 0.0786033 0.109032i
\(379\) −634322. + 1.95224e6i −0.226836 + 0.698129i 0.771264 + 0.636515i \(0.219625\pi\)
−0.998100 + 0.0616141i \(0.980375\pi\)
\(380\) 222872. 685931.i 0.0791767 0.243681i
\(381\) −3.03276e6 981278.i −1.07035 0.346322i
\(382\) 291697. 401487.i 0.102276 0.140771i
\(383\) 2.54320e6 826334.i 0.885896 0.287845i 0.169493 0.985531i \(-0.445787\pi\)
0.716403 + 0.697686i \(0.245787\pi\)
\(384\) −2.12824e6 + 1.55026e6i −0.736535 + 0.536510i
\(385\) −429980. + 75350.6i −0.147841 + 0.0259081i
\(386\) 715707.i 0.244493i
\(387\) 8479.67 + 3.44538e6i 0.00287807 + 1.16939i
\(388\) 402683. + 292567.i 0.135795 + 0.0986610i
\(389\) 2.99097e6 + 4.11672e6i 1.00216 + 1.37936i 0.923988 + 0.382421i \(0.124909\pi\)
0.0781755 + 0.996940i \(0.475091\pi\)
\(390\) 39997.7 + 122587.i 0.0133160 + 0.0408115i
\(391\) −3.68543e6 1.19747e6i −1.21912 0.396115i
\(392\) −1.02081e6 + 741663.i −0.335529 + 0.243776i
\(393\) −5.57573e6 + 6861.41i −1.82104 + 0.00224095i
\(394\) −198073. 609605.i −0.0642813 0.197837i
\(395\) −1.72891e6 −0.557545
\(396\) −1.35350e6 2.53694e6i −0.433731 0.812965i
\(397\) −3.77811e6 −1.20309 −0.601545 0.798839i \(-0.705448\pi\)
−0.601545 + 0.798839i \(0.705448\pi\)
\(398\) 143927. + 442962.i 0.0455444 + 0.140171i
\(399\) −1.35470e6 + 1667.07i −0.426001 + 0.000524230i
\(400\) −1.79920e6 + 1.30720e6i −0.562251 + 0.408500i
\(401\) −1.99322e6 647636.i −0.619005 0.201127i −0.0173064 0.999850i \(-0.505509\pi\)
−0.601698 + 0.798723i \(0.705509\pi\)
\(402\) 413523. + 1.26738e6i 0.127624 + 0.391149i
\(403\) −87276.3 120126.i −0.0267691 0.0368445i
\(404\) 1.04872e6 + 761940.i 0.319673 + 0.232256i
\(405\) −984205. 314440.i −0.298159 0.0952577i
\(406\) 652329.i 0.196404i
\(407\) −51093.8 96337.9i −0.0152891 0.0288278i
\(408\) 1.27232e6 926789.i 0.378396 0.275633i
\(409\) 3.04382e6 988996.i 0.899726 0.292339i 0.177602 0.984102i \(-0.443166\pi\)
0.722124 + 0.691764i \(0.243166\pi\)
\(410\) −74859.4 + 103035.i −0.0219931 + 0.0302709i
\(411\) 5.34542e6 + 1.72956e6i 1.56091 + 0.505047i
\(412\) 1.25339e6 3.85754e6i 0.363784 1.11961i
\(413\) −170772. + 525582.i −0.0492653 + 0.151623i
\(414\) 1.36993e6 448847.i 0.392823 0.128706i
\(415\) −1.18892e6 + 1.63640e6i −0.338868 + 0.466412i
\(416\) −1.23935e6 + 402690.i −0.351125 + 0.114087i
\(417\) 1.47899e6 + 2.03039e6i 0.416508 + 0.571794i
\(418\) 390790. 799104.i 0.109396 0.223698i
\(419\) 4.72687e6i 1.31534i −0.753305 0.657671i \(-0.771542\pi\)
0.753305 0.657671i \(-0.228458\pi\)
\(420\) −404851. 293381.i −0.111988 0.0811539i
\(421\) 2.46491e6 + 1.79086e6i 0.677790 + 0.492444i 0.872624 0.488393i \(-0.162417\pi\)
−0.194833 + 0.980836i \(0.562417\pi\)
\(422\) 292292. + 402306.i 0.0798980 + 0.109970i
\(423\) 521885. 722044.i 0.141816 0.196206i
\(424\) −1.22371e6 397608.i −0.330571 0.107409i
\(425\) 2.36198e6 1.71608e6i 0.634313 0.460856i
\(426\) 301.366 + 244897.i 8.04582e−5 + 0.0653821i
\(427\) −464275. 1.42889e6i −0.123227 0.379253i
\(428\) −3.11632e6 −0.822305
\(429\) −324208. 1.83676e6i −0.0850511 0.481847i
\(430\) −393379. −0.102598
\(431\) 967841. + 2.97871e6i 0.250964 + 0.772387i 0.994598 + 0.103800i \(0.0331003\pi\)
−0.743635 + 0.668586i \(0.766900\pi\)
\(432\) 913018. 2.84568e6i 0.235380 0.733630i
\(433\) 5.73902e6 4.16964e6i 1.47102 1.06876i 0.490699 0.871329i \(-0.336741\pi\)
0.980318 0.197427i \(-0.0632587\pi\)
\(434\) −46688.8 15170.1i −0.0118984 0.00386602i
\(435\) 1.71602e6 559904.i 0.434810 0.141870i
\(436\) 3.53036e6 + 4.85912e6i 0.889410 + 1.22417i
\(437\) −4.23130e6 3.07422e6i −1.05991 0.770071i
\(438\) 86984.7 120034.i 0.0216649 0.0298965i
\(439\) 7.52265e6i 1.86299i 0.363759 + 0.931493i \(0.381493\pi\)
−0.363759 + 0.931493i \(0.618507\pi\)
\(440\) 604801. 320763.i 0.148930 0.0789864i
\(441\) 964489. 2.99344e6i 0.236157 0.732950i
\(442\) 465678. 151308.i 0.113378 0.0368388i
\(443\) −762842. + 1.04996e6i −0.184682 + 0.254194i −0.891312 0.453390i \(-0.850215\pi\)
0.706630 + 0.707583i \(0.250215\pi\)
\(444\) 38449.2 118832.i 0.00925615 0.0286072i
\(445\) −614567. + 1.89144e6i −0.147119 + 0.452786i
\(446\) 349573. 1.07587e6i 0.0832147 0.256109i
\(447\) 1.51089e6 4.66958e6i 0.357654 1.10537i
\(448\) 669284. 921190.i 0.157549 0.216847i
\(449\) −957957. + 311259.i −0.224249 + 0.0728629i −0.418986 0.907993i \(-0.637615\pi\)
0.194737 + 0.980855i \(0.437615\pi\)
\(450\) −333086. + 1.03378e6i −0.0775398 + 0.240657i
\(451\) 1.28107e6 1.32380e6i 0.296574 0.306465i
\(452\) 2.21660e6i 0.510320i
\(453\) 1.51426e6 2.08960e6i 0.346700 0.478429i
\(454\) −1.44940e6 1.05305e6i −0.330027 0.239779i
\(455\) −190626. 262374.i −0.0431672 0.0594146i
\(456\) 2.01974e6 659001.i 0.454865 0.148414i
\(457\) −420939. 136771.i −0.0942820 0.0306341i 0.261496 0.965205i \(-0.415784\pi\)
−0.355778 + 0.934570i \(0.615784\pi\)
\(458\) 73797.6 53617.1i 0.0164391 0.0119437i
\(459\) −1.19860e6 + 3.73579e6i −0.265548 + 0.827657i
\(460\) −596493. 1.83582e6i −0.131435 0.404515i
\(461\) −4.94525e6 −1.08377 −0.541884 0.840454i \(-0.682289\pi\)
−0.541884 + 0.840454i \(0.682289\pi\)
\(462\) −443661. 428286.i −0.0967044 0.0933531i
\(463\) −3.37307e6 −0.731263 −0.365631 0.930760i \(-0.619147\pi\)
−0.365631 + 0.930760i \(0.619147\pi\)
\(464\) 1.61341e6 + 4.96556e6i 0.347896 + 1.07071i
\(465\) 167.163 + 135840.i 3.58516e−5 + 0.0291338i
\(466\) −464885. + 337759.i −0.0991701 + 0.0720513i
\(467\) −4.17712e6 1.35723e6i −0.886309 0.287979i −0.169734 0.985490i \(-0.554291\pi\)
−0.716574 + 0.697511i \(0.754291\pi\)
\(468\) 1.25139e6 1.73133e6i 0.264105 0.365398i
\(469\) −1.97082e6 2.71260e6i −0.413728 0.569447i
\(470\) 82292.7 + 59789.2i 0.0171837 + 0.0124847i
\(471\) 5.27267e6 + 3.82092e6i 1.09516 + 0.793625i
\(472\) 866669.i 0.179060i
\(473\) 5.63381e6 + 797826.i 1.15784 + 0.163967i
\(474\) −1.43798e6 1.97409e6i −0.293972 0.403573i
\(475\) 3.74765e6 1.21769e6i 0.762123 0.247629i
\(476\) −1.11593e6 + 1.53595e6i −0.225746 + 0.310712i
\(477\) 3.04762e6 998532.i 0.613289 0.200940i
\(478\) −640925. + 1.97256e6i −0.128303 + 0.394877i
\(479\) 1.53073e6 4.71110e6i 0.304831 0.938175i −0.674909 0.737901i \(-0.735817\pi\)
0.979740 0.200273i \(-0.0641830\pi\)
\(480\) 1.13428e6 + 367007.i 0.224707 + 0.0727062i
\(481\) 47619.6 65542.8i 0.00938476 0.0129170i
\(482\) −2.28095e6 + 741125.i −0.447196 + 0.145303i
\(483\) −2.93063e6 + 2.13474e6i −0.571601 + 0.416368i
\(484\) −4.46574e6 + 1.61476e6i −0.866523 + 0.313325i
\(485\) 295373.i 0.0570186i
\(486\) −459556. 1.38531e6i −0.0882567 0.266045i
\(487\) 6.19486e6 + 4.50083e6i 1.18361 + 0.859944i 0.992574 0.121639i \(-0.0388151\pi\)
0.191037 + 0.981583i \(0.438815\pi\)
\(488\) 1.38494e6 + 1.90620e6i 0.263258 + 0.362343i
\(489\) −1.78270e6 5.46371e6i −0.337137 1.03327i
\(490\) 341505. + 110962.i 0.0642550 + 0.0208777i
\(491\) 7712.16 5603.21i 0.00144368 0.00104890i −0.587063 0.809541i \(-0.699716\pi\)
0.588507 + 0.808492i \(0.299716\pi\)
\(492\) 2.10991e6 2596.42i 0.392963 0.000483574i
\(493\) −2.11807e6 6.51875e6i −0.392485 1.20794i
\(494\) 660866. 0.121842
\(495\) −745849. + 1.53470e6i −0.136816 + 0.281521i
\(496\) −392918. −0.0717129
\(497\) −190335. 585790.i −0.0345643 0.106378i
\(498\) −2.85732e6 + 3516.17i −0.516280 + 0.000635326i
\(499\) 3.50023e6 2.54306e6i 0.629282 0.457200i −0.226870 0.973925i \(-0.572849\pi\)
0.856151 + 0.516725i \(0.172849\pi\)
\(500\) 2.91651e6 + 947632.i 0.521721 + 0.169518i
\(501\) −1.80400e6 5.52899e6i −0.321102 0.984129i
\(502\) 1.69394e6 + 2.33151e6i 0.300012 + 0.412932i
\(503\) 565221. + 410657.i 0.0996090 + 0.0723702i 0.636475 0.771297i \(-0.280392\pi\)
−0.536866 + 0.843668i \(0.680392\pi\)
\(504\) −3624.76 1.47278e6i −0.000635628 0.258262i
\(505\) 769250.i 0.134227i
\(506\) −410947. 2.34502e6i −0.0713525 0.407165i
\(507\) −3.55827e6 + 2.59193e6i −0.614780 + 0.447821i
\(508\) −5.73421e6 + 1.86316e6i −0.985859 + 0.320325i
\(509\) −2.46827e6 + 3.39729e6i −0.422278 + 0.581216i −0.966159 0.257946i \(-0.916954\pi\)
0.543881 + 0.839162i \(0.316954\pi\)
\(510\) −426197. 137900.i −0.0725579 0.0234768i
\(511\) −115211. + 354584.i −0.0195184 + 0.0600713i
\(512\) −1.82621e6 + 5.62050e6i −0.307876 + 0.947545i
\(513\) −3.09668e6 + 4.29547e6i −0.519521 + 0.720638i
\(514\) −1435.12 + 1975.27i −0.000239597 + 0.000329776i
\(515\) −2.28916e6 + 743792.i −0.380327 + 0.123576i
\(516\) 3.83708e6 + 5.26765e6i 0.634420 + 0.870949i
\(517\) −1.05730e6 1.02318e6i −0.173969 0.168354i
\(518\) 26785.2i 0.00438602i
\(519\) 6.78006e6 + 4.91327e6i 1.10488 + 0.800667i
\(520\) 411472. + 298952.i 0.0667317 + 0.0484834i
\(521\) 1.59561e6 + 2.19617e6i 0.257533 + 0.354463i 0.918132 0.396276i \(-0.129698\pi\)
−0.660599 + 0.750739i \(0.729698\pi\)
\(522\) 2.06656e6 + 1.49369e6i 0.331950 + 0.239929i
\(523\) −6.29391e6 2.04502e6i −1.00616 0.326921i −0.240835 0.970566i \(-0.577421\pi\)
−0.765324 + 0.643645i \(0.777421\pi\)
\(524\) −8.53236e6 + 6.19913e6i −1.35750 + 0.986285i
\(525\) −3361.56 2.73168e6i −0.000532283 0.432545i
\(526\) −732791. 2.25530e6i −0.115482 0.355418i
\(527\) 515819. 0.0809041
\(528\) −4.43645e6 2.16282e6i −0.692550 0.337626i
\(529\) −7.56163e6 −1.17483
\(530\) 113151. + 348243.i 0.0174972 + 0.0538509i
\(531\) 1.27400e6 + 1.74447e6i 0.196080 + 0.268489i
\(532\) −2.07305e6 + 1.50616e6i −0.317564 + 0.230724i
\(533\) 1.30162e6 + 422922.i 0.198457 + 0.0644826i
\(534\) −2.67083e6 + 871439.i −0.405315 + 0.132246i
\(535\) 1.08699e6 + 1.49612e6i 0.164188 + 0.225986i
\(536\) 4.25407e6 + 3.09076e6i 0.639577 + 0.464680i
\(537\) 594973. 821033.i 0.0890351 0.122864i
\(538\) 1.90682e6i 0.284023i
\(539\) −4.66585e6 2.28177e6i −0.691766 0.338298i
\(540\) −1.85644e6 + 610782.i −0.273967 + 0.0901367i
\(541\) −822172. + 267140.i −0.120773 + 0.0392415i −0.368780 0.929517i \(-0.620224\pi\)
0.248007 + 0.968758i \(0.420224\pi\)
\(542\) −770517. + 1.06053e6i −0.112664 + 0.155068i
\(543\) −1.90707e6 + 5.89402e6i −0.277566 + 0.857852i
\(544\) 1.39891e6 4.30541e6i 0.202672 0.623759i
\(545\) 1.10141e6 3.38978e6i 0.158839 0.488855i
\(546\) 141034. 435883.i 0.0202462 0.0625732i
\(547\) 3.46047e6 4.76292e6i 0.494500 0.680621i −0.486710 0.873564i \(-0.661803\pi\)
0.981210 + 0.192943i \(0.0618031\pi\)
\(548\) 1.01069e7 3.28393e6i 1.43769 0.467135i
\(549\) −5.58978e6 1.80103e6i −0.791523 0.255029i
\(550\) 1.61135e6 + 788007.i 0.227134 + 0.111077i
\(551\) 9.25108e6i 1.29812i
\(552\) 3.33652e6 4.60423e6i 0.466064 0.643145i
\(553\) 4.96946e6 + 3.61052e6i 0.691029 + 0.502062i
\(554\) 460567. + 633916.i 0.0637556 + 0.0877520i
\(555\) −70461.4 + 22990.2i −0.00970998 + 0.00316818i
\(556\) 4.51884e6 + 1.46826e6i 0.619926 + 0.201426i
\(557\) 80189.3 58261.0i 0.0109516 0.00795682i −0.582296 0.812977i \(-0.697846\pi\)
0.593248 + 0.805020i \(0.297846\pi\)
\(558\) −154965. + 113173.i −0.0210693 + 0.0153871i
\(559\) 1.30630e6 + 4.02039e6i 0.176813 + 0.544175i
\(560\) −858198. −0.115643
\(561\) 5.82414e6 + 2.83934e6i 0.781312 + 0.380899i
\(562\) 3.30447e6 0.441328
\(563\) −23889.8 73525.2i −0.00317644 0.00977608i 0.949456 0.313901i \(-0.101636\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(564\) −2073.73 1.68516e6i −0.000274507 0.223071i
\(565\) 1.06417e6 773165.i 0.140246 0.101895i
\(566\) −1.44627e6 469921.i −0.189761 0.0616572i
\(567\) 2.17228e6 + 2.95914e6i 0.283764 + 0.386552i
\(568\) 567772. + 781471.i 0.0738419 + 0.101635i
\(569\) −602539. 437770.i −0.0780197 0.0566846i 0.548092 0.836418i \(-0.315354\pi\)
−0.626111 + 0.779734i \(0.715354\pi\)
\(570\) −489565. 354770.i −0.0631137 0.0457362i
\(571\) 1.67260e6i 0.214685i 0.994222 + 0.107343i \(0.0342342\pi\)
−0.994222 + 0.107343i \(0.965766\pi\)
\(572\) −2.53522e6 2.45340e6i −0.323986 0.313529i
\(573\) 2.87256e6 + 3.94353e6i 0.365496 + 0.501763i
\(574\) 430341. 139826.i 0.0545171 0.0177137i
\(575\) 6.19899e6 8.53218e6i 0.781900 1.07619i
\(576\) −1.38580e6 4.22960e6i −0.174038 0.531181i
\(577\) −794712. + 2.44587e6i −0.0993734 + 0.305840i −0.988369 0.152076i \(-0.951404\pi\)
0.888995 + 0.457916i \(0.151404\pi\)
\(578\) 170079. 523448.i 0.0211753 0.0651709i
\(579\) −6.69448e6 2.16606e6i −0.829890 0.268519i
\(580\) 2.00687e6 2.76221e6i 0.247713 0.340947i
\(581\) 6.83467e6 2.22072e6i 0.839996 0.272931i
\(582\) 337261. 245669.i 0.0412723 0.0300638i
\(583\) −914218. 5.21688e6i −0.111398 0.635682i
\(584\) 584699.i 0.0709415i
\(585\) −1.26769e6 + 3120.00i −0.153152 + 0.000376933i
\(586\) 1.28444e6 + 933198.i 0.154514 + 0.112261i
\(587\) −8.53641e6 1.17494e7i −1.02254 1.40741i −0.910408 0.413712i \(-0.864232\pi\)
−0.112132 0.993693i \(-0.535768\pi\)
\(588\) −1.84524e6 5.65536e6i −0.220094 0.674555i
\(589\) 662122. + 215137.i 0.0786411 + 0.0255521i
\(590\) −199533. + 144969.i −0.0235985 + 0.0171453i
\(591\) 6.30151e6 7754.53i 0.742123 0.000913244i
\(592\) −66248.1 203891.i −0.00776907 0.0239107i
\(593\) 8.65439e6 1.01065 0.505324 0.862930i \(-0.331373\pi\)
0.505324 + 0.862930i \(0.331373\pi\)
\(594\) −2.37268e6 + 424829.i −0.275914 + 0.0494024i
\(595\) 1.12663e6 0.130464
\(596\) −2.86873e6 8.82906e6i −0.330807 1.01812i
\(597\) −4.57891e6 + 5634.74i −0.525807 + 0.000647050i
\(598\) 1.43094e6 1.03964e6i 0.163632 0.118885i
\(599\) 1.21264e7 + 3.94010e6i 1.38091 + 0.448684i 0.902967 0.429710i \(-0.141384\pi\)
0.477939 + 0.878393i \(0.341384\pi\)
\(600\) 1.32884e6 + 4.07268e6i 0.150693 + 0.461852i
\(601\) 5.08517e6 + 6.99913e6i 0.574274 + 0.790420i 0.993053 0.117668i \(-0.0375418\pi\)
−0.418779 + 0.908088i \(0.637542\pi\)
\(602\) 1.13070e6 + 821502.i 0.127162 + 0.0923883i
\(603\) −1.31062e7 + 32256.6i −1.46785 + 0.00361264i
\(604\) 4.88120e6i 0.544421i
\(605\) 2.33291e6 + 1.58072e6i 0.259125 + 0.175577i
\(606\) 878340. 639804.i 0.0971585 0.0707726i
\(607\) −7.34627e6 + 2.38695e6i −0.809273 + 0.262949i −0.684290 0.729210i \(-0.739888\pi\)
−0.124983 + 0.992159i \(0.539888\pi\)
\(608\) 3.59138e6 4.94311e6i 0.394006 0.542302i
\(609\) −6.10166e6 1.97425e6i −0.666661 0.215705i
\(610\) 207204. 637707.i 0.0225462 0.0693899i
\(611\) 337782. 1.03959e6i 0.0366044 0.112657i
\(612\) 2.31061e6 + 7.05221e6i 0.249372 + 0.761109i
\(613\) −1.00394e7 + 1.38180e7i −1.07908 + 1.48523i −0.218555 + 0.975825i \(0.570134\pi\)
−0.860527 + 0.509405i \(0.829866\pi\)
\(614\) −2.09819e6 + 681743.i −0.224607 + 0.0729793i
\(615\) −737196. 1.01204e6i −0.0785950 0.107897i
\(616\) −2.40825e6 341043.i −0.255712 0.0362124i
\(617\) 1.37931e7i 1.45864i 0.684171 + 0.729322i \(0.260164\pi\)
−0.684171 + 0.729322i \(0.739836\pi\)
\(618\) −2.75322e6 1.99516e6i −0.289981 0.210139i
\(619\) −9.55588e6 6.94275e6i −1.00241 0.728291i −0.0398039 0.999208i \(-0.512673\pi\)
−0.962603 + 0.270916i \(0.912673\pi\)
\(620\) 151028. + 207872.i 0.0157790 + 0.0217179i
\(621\) 52320.7 + 1.41723e7i 0.00544433 + 1.47472i
\(622\) −165700. 53839.1i −0.0171730 0.00557984i
\(623\) 5.71641e6 4.15322e6i 0.590070 0.428711i
\(624\) −4512.29 3.66678e6i −0.000463912 0.376985i
\(625\) 2.15974e6 + 6.64700e6i 0.221157 + 0.680652i
\(626\) 3.27888e6 0.334418
\(627\) 6.29183e6 + 6.07378e6i 0.639158 + 0.617007i
\(628\) 1.23167e7 1.24622
\(629\) 86969.9 + 267666.i 0.00876481 + 0.0269753i
\(630\) −338470. + 247188.i −0.0339758 + 0.0248128i
\(631\) 3.82843e6 2.78152e6i 0.382779 0.278105i −0.379711 0.925105i \(-0.623977\pi\)
0.762490 + 0.647000i \(0.223977\pi\)
\(632\) −9.16172e6 2.97682e6i −0.912398 0.296456i
\(633\) −4.64765e6 + 1.51644e6i −0.461024 + 0.150423i
\(634\) −1.74239e6 2.39820e6i −0.172156 0.236953i
\(635\) 2.89461e6 + 2.10306e6i 0.284876 + 0.206975i
\(636\) 3.55955e6 4.91201e6i 0.348942 0.481522i
\(637\) 3.85870e6i 0.376784i
\(638\) 2.92844e6 3.02610e6i 0.284829 0.294328i
\(639\) −2.29159e6 738354.i −0.222017 0.0715340i
\(640\) 2.81082e6 913292.i 0.271259 0.0881373i
\(641\) −1.80711e6 + 2.48727e6i −0.173716 + 0.239099i −0.886993 0.461783i \(-0.847210\pi\)
0.713277 + 0.700882i \(0.247210\pi\)
\(642\) −804207. + 2.48550e6i −0.0770070 + 0.237999i
\(643\) 1.32318e6 4.07232e6i 0.126209 0.388432i −0.867910 0.496721i \(-0.834537\pi\)
0.994119 + 0.108289i \(0.0345372\pi\)
\(644\) −2.11926e6 + 6.52241e6i −0.201358 + 0.619717i
\(645\) 1.19055e6 3.67953e6i 0.112680 0.348252i
\(646\) −1.34943e6 + 1.85734e6i −0.127224 + 0.175109i
\(647\) −1.52999e7 + 4.97125e6i −1.43691 + 0.466880i −0.920932 0.389723i \(-0.872571\pi\)
−0.515977 + 0.856603i \(0.672571\pi\)
\(648\) −4.67403e6 3.36085e6i −0.437274 0.314421i
\(649\) 3.15164e6 1.67151e6i 0.293714 0.155775i
\(650\) 1.33260e6i 0.123713i
\(651\) 283198. 390799.i 0.0261901 0.0361411i
\(652\) −8.79473e6 6.38974e6i −0.810221 0.588660i
\(653\) 1.03811e7 + 1.42884e7i 0.952713 + 1.31130i 0.950312 + 0.311300i \(0.100764\pi\)
0.00240120 + 0.999997i \(0.499236\pi\)
\(654\) 4.78656e6 1.56176e6i 0.437602 0.142781i
\(655\) 5.95228e6 + 1.93401e6i 0.542101 + 0.176139i
\(656\) 2.92995e6 2.12873e6i 0.265827 0.193135i
\(657\) 859506. + 1.17691e6i 0.0776847 + 0.106372i
\(658\) −111677. 343707.i −0.0100554 0.0309474i
\(659\) −1.88022e7 −1.68654 −0.843268 0.537493i \(-0.819371\pi\)
−0.843268 + 0.537493i \(0.819371\pi\)
\(660\) 561028. + 3.17843e6i 0.0501331 + 0.284023i
\(661\) 8.78537e6 0.782089 0.391045 0.920372i \(-0.372114\pi\)
0.391045 + 0.920372i \(0.372114\pi\)
\(662\) 982790. + 3.02472e6i 0.0871597 + 0.268250i
\(663\) 5923.69 + 4.81372e6i 0.000523370 + 0.425302i
\(664\) −9.11776e6 + 6.62444e6i −0.802542 + 0.583081i
\(665\) 1.44619e6 + 469894.i 0.126815 + 0.0412046i
\(666\) −84855.0 61332.2i −0.00741296 0.00535800i
\(667\) −1.45533e7 2.00308e7i −1.26662 1.74335i
\(668\) −8.89982e6 6.46610e6i −0.771685 0.560662i
\(669\) 9.00539e6 + 6.52588e6i 0.777924 + 0.563734i
\(670\) 1.49641e6i 0.128784i
\(671\) −4.26084e6 + 8.71274e6i −0.365333 + 0.747048i
\(672\) −2.49386e6 3.42364e6i −0.213034 0.292459i
\(673\) −6.40754e6 + 2.08194e6i −0.545323 + 0.177186i −0.568707 0.822540i \(-0.692556\pi\)
0.0233837 + 0.999727i \(0.492556\pi\)
\(674\) 306206. 421456.i 0.0259635 0.0357357i
\(675\) −8.66158e6 6.24428e6i −0.731708 0.527501i
\(676\) −2.57314e6 + 7.91930e6i −0.216569 + 0.666530i
\(677\) −1.84335e6 + 5.67324e6i −0.154574 + 0.475729i −0.998117 0.0613314i \(-0.980465\pi\)
0.843544 + 0.537061i \(0.180465\pi\)
\(678\) 1.76791e6 + 572023.i 0.147702 + 0.0477903i
\(679\) −616835. + 849000.i −0.0513445 + 0.0706697i
\(680\) −1.68038e6 + 545990.i −0.139359 + 0.0452806i
\(681\) 1.42365e7 1.03702e7i 1.17634 0.856878i
\(682\) 148484. + 279968.i 0.0122242 + 0.0230488i
\(683\) 5.36224e6i 0.439839i 0.975518 + 0.219920i \(0.0705795\pi\)
−0.975518 + 0.219920i \(0.929420\pi\)
\(684\) 24651.5 + 1.00162e7i 0.00201467 + 0.818579i
\(685\) −5.10193e6 3.70677e6i −0.415440 0.301835i
\(686\) −1.72367e6 2.37242e6i −0.139844 0.192478i
\(687\) 278170. + 852549.i 0.0224863 + 0.0689172i
\(688\) 1.06388e7 + 3.45675e6i 0.856881 + 0.278418i
\(689\) 3.18335e6 2.31284e6i 0.255468 0.185608i
\(690\) −1.61813e6 + 1991.25i −0.129387 + 0.000159222i
\(691\) 2.36816e6 + 7.28844e6i 0.188675 + 0.580683i 0.999992 0.00392342i \(-0.00124887\pi\)
−0.811317 + 0.584607i \(0.801249\pi\)
\(692\) 1.58379e7 1.25728
\(693\) 5.34877e6 2.85366e6i 0.423078 0.225720i
\(694\) 480233. 0.0378489
\(695\) −871300. 2.68159e6i −0.0684236 0.210586i
\(696\) 1.00574e7 12376.5i 0.786981 0.000968447i
\(697\) −3.84641e6 + 2.79458e6i −0.299898 + 0.217888i
\(698\) −5.44748e6 1.76999e6i −0.423211 0.137510i
\(699\) −1.75232e6 5.37060e6i −0.135650 0.415747i
\(700\) −3.03709e6 4.18020e6i −0.234268 0.322442i
\(701\) −8.70669e6 6.32578e6i −0.669203 0.486204i 0.200555 0.979682i \(-0.435725\pi\)
−0.869758 + 0.493478i \(0.835725\pi\)
\(702\) −1.05793e6 1.44487e6i −0.0810240 0.110659i
\(703\) 379858.i 0.0289890i
\(704\) −7.24017e6 + 1.26878e6i −0.550576 + 0.0964841i
\(705\) −808304. + 588788.i −0.0612494 + 0.0446156i
\(706\) 4981.04 1618.44i 0.000376104 0.000122204i
\(707\) −1.60644e6 + 2.21108e6i −0.120869 + 0.166362i
\(708\) 3.88752e6 + 1.25785e6i 0.291467 + 0.0943071i
\(709\) 1.24732e6 3.83885e6i 0.0931883 0.286804i −0.893589 0.448886i \(-0.851821\pi\)
0.986777 + 0.162082i \(0.0518209\pi\)
\(710\) 84945.5 261435.i 0.00632404 0.0194634i
\(711\) 2.28170e7 7.47583e6i 1.69272 0.554607i
\(712\) −6.51334e6 + 8.96484e6i −0.481508 + 0.662739i
\(713\) 1.77210e6 575789.i 0.130546 0.0424170i
\(714\) 937050. + 1.28641e6i 0.0687887 + 0.0944350i
\(715\) −293551. + 2.07289e6i −0.0214743 + 0.151639i
\(716\) 1.91789e6i 0.139811i
\(717\) −1.65110e7 1.19649e7i −1.19943 0.869183i
\(718\) −2.89087e6 2.10034e6i −0.209275 0.152047i
\(719\) −2.22229e6 3.05872e6i −0.160316 0.220657i 0.721301 0.692622i \(-0.243545\pi\)
−0.881617 + 0.471966i \(0.843545\pi\)
\(720\) −1.96508e6 + 2.71875e6i −0.141270 + 0.195451i
\(721\) 8.13307e6 + 2.64259e6i 0.582661 + 0.189318i
\(722\) 669505. 486424.i 0.0477981 0.0347273i
\(723\) −29015.0 2.35782e7i −0.00206432 1.67751i
\(724\) 3.62096e6 + 1.11442e7i 0.256731 + 0.790136i
\(725\) 1.86543e7 1.31806
\(726\) 135450. + 3.97847e6i 0.00953757 + 0.280140i
\(727\) 2.30783e7 1.61945 0.809726 0.586809i \(-0.199616\pi\)
0.809726 + 0.586809i \(0.199616\pi\)
\(728\) −558398. 1.71857e6i −0.0390495 0.120182i
\(729\) 1.43485e7 105944.i 0.999973 0.00738344i
\(730\) −134615. + 97803.4i −0.00934944 + 0.00679277i
\(731\) −1.39665e7 4.53799e6i −0.966705 0.314101i
\(732\) −1.05605e7 + 3.44568e6i −0.728461 + 0.237683i
\(733\) −3.56450e6 4.90611e6i −0.245041 0.337270i 0.668726 0.743509i \(-0.266840\pi\)
−0.913767 + 0.406239i \(0.866840\pi\)
\(734\) 1.21522e6 + 882908.i 0.0832558 + 0.0604888i
\(735\) −2.07145e6 + 2.85850e6i −0.141435 + 0.195173i
\(736\) 1.63528e7i 1.11275i
\(737\) −3.03492e6 + 2.14309e7i −0.205816 + 1.45336i
\(738\) 542419. 1.68348e6i 0.0366601 0.113780i
\(739\) 2.18721e7 7.10668e6i 1.47326 0.478692i 0.541170 0.840913i \(-0.317982\pi\)
0.932092 + 0.362222i \(0.117982\pi\)
\(740\) −82403.8 + 113419.i −0.00553182 + 0.00761389i
\(741\) −2.00009e6 + 6.18152e6i −0.133815 + 0.413571i
\(742\) 402011. 1.23726e6i 0.0268057 0.0824996i
\(743\) 2.33070e6 7.17317e6i 0.154887 0.476693i −0.843262 0.537502i \(-0.819368\pi\)
0.998149 + 0.0608088i \(0.0193680\pi\)
\(744\) −233003. + 720123.i −0.0154322 + 0.0476952i
\(745\) −3.23811e6 + 4.45688e6i −0.213747 + 0.294198i
\(746\) −862991. + 280403.i −0.0567753 + 0.0184474i
\(747\) 8.61470e6 2.67370e7i 0.564857 1.75312i
\(748\) 1.20719e7 2.11550e6i 0.788898 0.138248i
\(749\) 6.57032e6i 0.427939i
\(750\) 1.50845e6 2.08158e6i 0.0979214 0.135127i
\(751\) −5.30255e6 3.85253e6i −0.343071 0.249256i 0.402885 0.915251i \(-0.368007\pi\)
−0.745957 + 0.665995i \(0.768007\pi\)
\(752\) −1.70019e6 2.34011e6i −0.109636 0.150901i
\(753\) −2.69348e7 + 8.78832e6i −1.73112 + 0.564831i
\(754\) 2.97540e6 + 966766.i 0.190597 + 0.0619289i
\(755\) −2.34342e6 + 1.70259e6i −0.149617 + 0.108703i
\(756\) 6.61154e6 + 2.12127e6i 0.420725 + 0.134987i
\(757\) 2.25280e6 + 6.93341e6i 0.142884 + 0.439751i 0.996733 0.0807695i \(-0.0257378\pi\)
−0.853849 + 0.520521i \(0.825738\pi\)
\(758\) 3.25483e6 0.205757
\(759\) 2.31783e7 + 3.25328e6i 1.46042 + 0.204983i
\(760\) −2.38472e6 −0.149762
\(761\) −3.22162e6 9.91514e6i −0.201657 0.620636i −0.999834 0.0182135i \(-0.994202\pi\)
0.798177 0.602423i \(-0.205798\pi\)