Properties

Label 33.6.d.b.32.4
Level $33$
Weight $6$
Character 33.32
Analytic conductor $5.293$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 33.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.29266605383\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{15} - 195 x^{14} - 642 x^{13} + 89670 x^{12} + 53946 x^{11} + 91115757 x^{10} - 2121785838 x^{9} + 37710373995 x^{8} - 835758339660 x^{7} + 12972600642204 x^{6} - 129499271268696 x^{5} + 2168293345395660 x^{4} - 17336133272224368 x^{3} + 169639595563975056 x^{2} - 1075523563426213440 x + 9241272870780234240\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 32.4
Root \(-23.0756 - 10.4175i\) of defining polynomial
Character \(\chi\) \(=\) 33.32
Dual form 33.6.d.b.32.3

$q$-expansion

\(f(q)\) \(=\) \(q-8.47928 q^{2} +(11.5964 + 10.4175i) q^{3} +39.8981 q^{4} -35.7023i q^{5} +(-98.3287 - 88.3330i) q^{6} +11.5666i q^{7} -66.9703 q^{8} +(25.9508 + 241.610i) q^{9} +O(q^{10})\) \(q-8.47928 q^{2} +(11.5964 + 10.4175i) q^{3} +39.8981 q^{4} -35.7023i q^{5} +(-98.3287 - 88.3330i) q^{6} +11.5666i q^{7} -66.9703 q^{8} +(25.9508 + 241.610i) q^{9} +302.729i q^{10} +(202.832 + 346.281i) q^{11} +(462.673 + 415.639i) q^{12} +933.326i q^{13} -98.0760i q^{14} +(371.929 - 414.016i) q^{15} -708.880 q^{16} +25.0813 q^{17} +(-220.044 - 2048.68i) q^{18} +743.695i q^{19} -1424.45i q^{20} +(-120.495 + 134.130i) q^{21} +(-1719.86 - 2936.21i) q^{22} +594.979i q^{23} +(-776.611 - 697.664i) q^{24} +1850.35 q^{25} -7913.93i q^{26} +(-2216.04 + 3072.14i) q^{27} +461.484i q^{28} +3975.05 q^{29} +(-3153.69 + 3510.56i) q^{30} -3071.33 q^{31} +8153.84 q^{32} +(-1255.28 + 6128.59i) q^{33} -212.671 q^{34} +412.952 q^{35} +(1035.39 + 9639.80i) q^{36} +10317.8 q^{37} -6306.00i q^{38} +(-9722.94 + 10823.2i) q^{39} +2390.99i q^{40} -17759.6 q^{41} +(1021.71 - 1137.32i) q^{42} -22910.3i q^{43} +(8092.60 + 13815.9i) q^{44} +(8626.04 - 926.502i) q^{45} -5044.99i q^{46} +3402.05i q^{47} +(-8220.42 - 7384.77i) q^{48} +16673.2 q^{49} -15689.6 q^{50} +(290.852 + 261.285i) q^{51} +37238.0i q^{52} -12325.8i q^{53} +(18790.5 - 26049.5i) q^{54} +(12363.0 - 7241.55i) q^{55} -774.615i q^{56} +(-7747.46 + 8624.15i) q^{57} -33705.5 q^{58} +30346.5i q^{59} +(14839.3 - 16518.5i) q^{60} +36444.5i q^{61} +26042.7 q^{62} +(-2794.60 + 300.161i) q^{63} -46454.5 q^{64} +33321.9 q^{65} +(10643.9 - 51966.0i) q^{66} -28572.0 q^{67} +1000.70 q^{68} +(-6198.20 + 6899.59i) q^{69} -3501.54 q^{70} -59302.3i q^{71} +(-1737.93 - 16180.7i) q^{72} -72406.9i q^{73} -87487.9 q^{74} +(21457.3 + 19276.0i) q^{75} +29672.0i q^{76} +(-4005.27 + 2346.06i) q^{77} +(82443.5 - 91772.7i) q^{78} +26947.6i q^{79} +25308.6i q^{80} +(-57702.1 + 12540.0i) q^{81} +150589. q^{82} -32457.1 q^{83} +(-4807.51 + 5351.53i) q^{84} -895.460i q^{85} +194263. i q^{86} +(46096.0 + 41410.1i) q^{87} +(-13583.7 - 23190.5i) q^{88} -10808.1i q^{89} +(-73142.6 + 7856.07i) q^{90} -10795.4 q^{91} +23738.5i q^{92} +(-35616.3 - 31995.7i) q^{93} -28846.9i q^{94} +26551.6 q^{95} +(94554.8 + 84942.7i) q^{96} -105449. q^{97} -141377. q^{98} +(-78401.4 + 57992.5i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 54q^{3} + 316q^{4} - 222q^{9} + O(q^{10}) \) \( 16q - 54q^{3} + 316q^{4} - 222q^{9} - 552q^{12} - 1674q^{15} + 1684q^{16} + 7932q^{22} - 1356q^{25} - 3240q^{27} - 11980q^{31} - 5106q^{33} - 34032q^{34} + 14016q^{36} + 9356q^{37} + 45912q^{42} + 77430q^{45} - 78012q^{48} - 1136q^{49} + 117308q^{55} + 31848q^{58} - 220548q^{60} + 5860q^{64} - 164796q^{66} - 364132q^{67} + 113790q^{69} + 231144q^{70} + 320364q^{75} + 296088q^{78} - 251334q^{81} + 4824q^{82} + 586836q^{88} - 209184q^{91} - 521046q^{93} + 119852q^{97} - 243894q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.47928 −1.49894 −0.749469 0.662039i \(-0.769691\pi\)
−0.749469 + 0.662039i \(0.769691\pi\)
\(3\) 11.5964 + 10.4175i 0.743906 + 0.668284i
\(4\) 39.8981 1.24682
\(5\) 35.7023i 0.638662i −0.947643 0.319331i \(-0.896542\pi\)
0.947643 0.319331i \(-0.103458\pi\)
\(6\) −98.3287 88.3330i −1.11507 1.00172i
\(7\) 11.5666i 0.0892193i 0.999004 + 0.0446096i \(0.0142044\pi\)
−0.999004 + 0.0446096i \(0.985796\pi\)
\(8\) −66.9703 −0.369962
\(9\) 25.9508 + 241.610i 0.106793 + 0.994281i
\(10\) 302.729i 0.957315i
\(11\) 202.832 + 346.281i 0.505422 + 0.862873i
\(12\) 462.673 + 415.639i 0.927514 + 0.833227i
\(13\) 933.326i 1.53170i 0.643017 + 0.765852i \(0.277683\pi\)
−0.643017 + 0.765852i \(0.722317\pi\)
\(14\) 98.0760i 0.133734i
\(15\) 371.929 414.016i 0.426807 0.475105i
\(16\) −708.880 −0.692266
\(17\) 25.0813 0.0210488 0.0105244 0.999945i \(-0.496650\pi\)
0.0105244 + 0.999945i \(0.496650\pi\)
\(18\) −220.044 2048.68i −0.160077 1.49037i
\(19\) 743.695i 0.472619i 0.971678 + 0.236309i \(0.0759379\pi\)
−0.971678 + 0.236309i \(0.924062\pi\)
\(20\) 1424.45i 0.796294i
\(21\) −120.495 + 134.130i −0.0596238 + 0.0663708i
\(22\) −1719.86 2936.21i −0.757596 1.29339i
\(23\) 594.979i 0.234521i 0.993101 + 0.117261i \(0.0374113\pi\)
−0.993101 + 0.117261i \(0.962589\pi\)
\(24\) −776.611 697.664i −0.275217 0.247240i
\(25\) 1850.35 0.592111
\(26\) 7913.93i 2.29593i
\(27\) −2216.04 + 3072.14i −0.585018 + 0.811020i
\(28\) 461.484i 0.111240i
\(29\) 3975.05 0.877702 0.438851 0.898560i \(-0.355386\pi\)
0.438851 + 0.898560i \(0.355386\pi\)
\(30\) −3153.69 + 3510.56i −0.639758 + 0.712152i
\(31\) −3071.33 −0.574014 −0.287007 0.957928i \(-0.592660\pi\)
−0.287007 + 0.957928i \(0.592660\pi\)
\(32\) 8153.84 1.40763
\(33\) −1255.28 + 6128.59i −0.200657 + 0.979661i
\(34\) −212.671 −0.0315509
\(35\) 412.952 0.0569810
\(36\) 1035.39 + 9639.80i 0.133152 + 1.23969i
\(37\) 10317.8 1.23904 0.619519 0.784982i \(-0.287328\pi\)
0.619519 + 0.784982i \(0.287328\pi\)
\(38\) 6306.00i 0.708426i
\(39\) −9722.94 + 10823.2i −1.02361 + 1.13944i
\(40\) 2390.99i 0.236281i
\(41\) −17759.6 −1.64996 −0.824982 0.565160i \(-0.808815\pi\)
−0.824982 + 0.565160i \(0.808815\pi\)
\(42\) 1021.71 1137.32i 0.0893724 0.0994857i
\(43\) 22910.3i 1.88956i −0.327711 0.944778i \(-0.606277\pi\)
0.327711 0.944778i \(-0.393723\pi\)
\(44\) 8092.60 + 13815.9i 0.630168 + 1.07584i
\(45\) 8626.04 926.502i 0.635009 0.0682048i
\(46\) 5044.99i 0.351533i
\(47\) 3402.05i 0.224644i 0.993672 + 0.112322i \(0.0358289\pi\)
−0.993672 + 0.112322i \(0.964171\pi\)
\(48\) −8220.42 7384.77i −0.514981 0.462630i
\(49\) 16673.2 0.992040
\(50\) −15689.6 −0.887538
\(51\) 290.852 + 261.285i 0.0156584 + 0.0140666i
\(52\) 37238.0i 1.90975i
\(53\) 12325.8i 0.602734i −0.953508 0.301367i \(-0.902557\pi\)
0.953508 0.301367i \(-0.0974430\pi\)
\(54\) 18790.5 26049.5i 0.876906 1.21567i
\(55\) 12363.0 7241.55i 0.551084 0.322794i
\(56\) 774.615i 0.0330078i
\(57\) −7747.46 + 8624.15i −0.315844 + 0.351584i
\(58\) −33705.5 −1.31562
\(59\) 30346.5i 1.13496i 0.823389 + 0.567478i \(0.192081\pi\)
−0.823389 + 0.567478i \(0.807919\pi\)
\(60\) 14839.3 16518.5i 0.532150 0.592368i
\(61\) 36444.5i 1.25403i 0.779008 + 0.627014i \(0.215723\pi\)
−0.779008 + 0.627014i \(0.784277\pi\)
\(62\) 26042.7 0.860412
\(63\) −2794.60 + 300.161i −0.0887091 + 0.00952803i
\(64\) −46454.5 −1.41768
\(65\) 33321.9 0.978241
\(66\) 10643.9 51966.0i 0.300773 1.46845i
\(67\) −28572.0 −0.777595 −0.388798 0.921323i \(-0.627109\pi\)
−0.388798 + 0.921323i \(0.627109\pi\)
\(68\) 1000.70 0.0262440
\(69\) −6198.20 + 6899.59i −0.156727 + 0.174462i
\(70\) −3501.54 −0.0854109
\(71\) 59302.3i 1.39613i −0.716035 0.698065i \(-0.754045\pi\)
0.716035 0.698065i \(-0.245955\pi\)
\(72\) −1737.93 16180.7i −0.0395095 0.367846i
\(73\) 72406.9i 1.59028i −0.606428 0.795139i \(-0.707398\pi\)
0.606428 0.795139i \(-0.292602\pi\)
\(74\) −87487.9 −1.85724
\(75\) 21457.3 + 19276.0i 0.440475 + 0.395698i
\(76\) 29672.0i 0.589269i
\(77\) −4005.27 + 2346.06i −0.0769849 + 0.0450934i
\(78\) 82443.5 91772.7i 1.53433 1.70796i
\(79\) 26947.6i 0.485794i 0.970052 + 0.242897i \(0.0780978\pi\)
−0.970052 + 0.242897i \(0.921902\pi\)
\(80\) 25308.6i 0.442124i
\(81\) −57702.1 + 12540.0i −0.977190 + 0.212365i
\(82\) 150589. 2.47319
\(83\) −32457.1 −0.517148 −0.258574 0.965991i \(-0.583253\pi\)
−0.258574 + 0.965991i \(0.583253\pi\)
\(84\) −4807.51 + 5351.53i −0.0743399 + 0.0827522i
\(85\) 895.460i 0.0134431i
\(86\) 194263.i 2.83233i
\(87\) 46096.0 + 41410.1i 0.652928 + 0.586554i
\(88\) −13583.7 23190.5i −0.186987 0.319230i
\(89\) 10808.1i 0.144635i −0.997382 0.0723176i \(-0.976960\pi\)
0.997382 0.0723176i \(-0.0230395\pi\)
\(90\) −73142.6 + 7856.07i −0.951840 + 0.102235i
\(91\) −10795.4 −0.136658
\(92\) 23738.5i 0.292405i
\(93\) −35616.3 31995.7i −0.427013 0.383605i
\(94\) 28846.9i 0.336728i
\(95\) 26551.6 0.301844
\(96\) 94554.8 + 84942.7i 1.04714 + 0.940694i
\(97\) −105449. −1.13792 −0.568962 0.822364i \(-0.692655\pi\)
−0.568962 + 0.822364i \(0.692655\pi\)
\(98\) −141377. −1.48701
\(99\) −78401.4 + 57992.5i −0.803962 + 0.594680i
\(100\) 73825.4 0.738254
\(101\) 158525. 1.54630 0.773150 0.634223i \(-0.218680\pi\)
0.773150 + 0.634223i \(0.218680\pi\)
\(102\) −2466.21 2215.51i −0.0234709 0.0210849i
\(103\) 116352. 1.08064 0.540321 0.841459i \(-0.318303\pi\)
0.540321 + 0.841459i \(0.318303\pi\)
\(104\) 62505.1i 0.566673i
\(105\) 4788.74 + 4301.94i 0.0423885 + 0.0380795i
\(106\) 104514.i 0.903462i
\(107\) 46004.0 0.388451 0.194225 0.980957i \(-0.437781\pi\)
0.194225 + 0.980957i \(0.437781\pi\)
\(108\) −88416.0 + 122573.i −0.729410 + 1.01119i
\(109\) 121732.i 0.981385i −0.871333 0.490693i \(-0.836744\pi\)
0.871333 0.490693i \(-0.163256\pi\)
\(110\) −104829. + 61403.1i −0.826041 + 0.483848i
\(111\) 119649. + 107486.i 0.921728 + 0.828029i
\(112\) 8199.30i 0.0617635i
\(113\) 191518.i 1.41096i −0.708731 0.705479i \(-0.750732\pi\)
0.708731 0.705479i \(-0.249268\pi\)
\(114\) 65692.8 73126.6i 0.473430 0.527003i
\(115\) 21242.1 0.149780
\(116\) 158597. 1.09433
\(117\) −225501. + 24220.5i −1.52295 + 0.163576i
\(118\) 257316.i 1.70123i
\(119\) 290.104i 0.00187796i
\(120\) −24908.2 + 27726.8i −0.157903 + 0.175771i
\(121\) −78769.7 + 140473.i −0.489098 + 0.872229i
\(122\) 309023.i 1.87971i
\(123\) −205947. 185011.i −1.22742 1.10264i
\(124\) −122540. −0.715690
\(125\) 177631.i 1.01682i
\(126\) 23696.2 2545.15i 0.132969 0.0142819i
\(127\) 74201.3i 0.408227i −0.978947 0.204114i \(-0.934569\pi\)
0.978947 0.204114i \(-0.0654312\pi\)
\(128\) 132978. 0.717387
\(129\) 238668. 265676.i 1.26276 1.40565i
\(130\) −282545. −1.46632
\(131\) −88605.0 −0.451107 −0.225554 0.974231i \(-0.572419\pi\)
−0.225554 + 0.974231i \(0.572419\pi\)
\(132\) −50083.2 + 244519.i −0.250183 + 1.22146i
\(133\) −8601.99 −0.0421667
\(134\) 242270. 1.16557
\(135\) 109682. + 79117.9i 0.517968 + 0.373629i
\(136\) −1679.70 −0.00778727
\(137\) 176386.i 0.802904i −0.915880 0.401452i \(-0.868506\pi\)
0.915880 0.401452i \(-0.131494\pi\)
\(138\) 52556.3 58503.5i 0.234924 0.261507i
\(139\) 385558.i 1.69259i 0.532712 + 0.846297i \(0.321173\pi\)
−0.532712 + 0.846297i \(0.678827\pi\)
\(140\) 16476.0 0.0710448
\(141\) −35440.9 + 39451.3i −0.150126 + 0.167114i
\(142\) 502841.i 2.09271i
\(143\) −323193. + 189308.i −1.32167 + 0.774157i
\(144\) −18396.0 171273.i −0.0739294 0.688307i
\(145\) 141918.i 0.560555i
\(146\) 613958.i 2.38373i
\(147\) 193348. + 173693.i 0.737985 + 0.662964i
\(148\) 411663. 1.54485
\(149\) 228625. 0.843642 0.421821 0.906679i \(-0.361391\pi\)
0.421821 + 0.906679i \(0.361391\pi\)
\(150\) −181942. 163447.i −0.660245 0.593127i
\(151\) 152707.i 0.545026i 0.962152 + 0.272513i \(0.0878548\pi\)
−0.962152 + 0.272513i \(0.912145\pi\)
\(152\) 49805.5i 0.174851i
\(153\) 650.879 + 6059.90i 0.00224787 + 0.0209284i
\(154\) 33961.8 19892.9i 0.115396 0.0675922i
\(155\) 109654.i 0.366601i
\(156\) −387927. + 431824.i −1.27626 + 1.42068i
\(157\) −206031. −0.667089 −0.333545 0.942734i \(-0.608245\pi\)
−0.333545 + 0.942734i \(0.608245\pi\)
\(158\) 228496.i 0.728176i
\(159\) 128404. 142935.i 0.402798 0.448378i
\(160\) 291111.i 0.898997i
\(161\) −6881.85 −0.0209238
\(162\) 489272. 106330.i 1.46475 0.318322i
\(163\) 363134. 1.07053 0.535264 0.844685i \(-0.320212\pi\)
0.535264 + 0.844685i \(0.320212\pi\)
\(164\) −708576. −2.05720
\(165\) 218805. + 44816.3i 0.625672 + 0.128152i
\(166\) 275213. 0.775173
\(167\) 514079. 1.42639 0.713196 0.700965i \(-0.247247\pi\)
0.713196 + 0.700965i \(0.247247\pi\)
\(168\) 8069.57 8982.71i 0.0220586 0.0245547i
\(169\) −499804. −1.34612
\(170\) 7592.85i 0.0201503i
\(171\) −179684. + 19299.5i −0.469916 + 0.0504725i
\(172\) 914078.i 2.35593i
\(173\) −437300. −1.11087 −0.555436 0.831559i \(-0.687449\pi\)
−0.555436 + 0.831559i \(0.687449\pi\)
\(174\) −390861. 351128.i −0.978699 0.879209i
\(175\) 21402.1i 0.0528277i
\(176\) −143783. 245472.i −0.349886 0.597337i
\(177\) −316135. + 351909.i −0.758472 + 0.844301i
\(178\) 91644.8i 0.216799i
\(179\) 205264.i 0.478828i 0.970918 + 0.239414i \(0.0769553\pi\)
−0.970918 + 0.239414i \(0.923045\pi\)
\(180\) 344163. 36965.7i 0.791740 0.0850389i
\(181\) 274310. 0.622366 0.311183 0.950350i \(-0.399275\pi\)
0.311183 + 0.950350i \(0.399275\pi\)
\(182\) 91536.9 0.204841
\(183\) −379661. + 422623.i −0.838046 + 0.932879i
\(184\) 39845.9i 0.0867640i
\(185\) 368371.i 0.791326i
\(186\) 302000. + 271300.i 0.640066 + 0.575000i
\(187\) 5087.28 + 8685.17i 0.0106385 + 0.0181625i
\(188\) 135735.i 0.280090i
\(189\) −35534.1 25632.0i −0.0723587 0.0521949i
\(190\) −225138. −0.452445
\(191\) 631297.i 1.25213i 0.779770 + 0.626066i \(0.215336\pi\)
−0.779770 + 0.626066i \(0.784664\pi\)
\(192\) −538703. 483940.i −1.05462 0.947412i
\(193\) 5646.93i 0.0109124i 0.999985 + 0.00545619i \(0.00173677\pi\)
−0.999985 + 0.00545619i \(0.998263\pi\)
\(194\) 894131. 1.70568
\(195\) 386412. + 347131.i 0.727720 + 0.653743i
\(196\) 665230. 1.23689
\(197\) 739771. 1.35810 0.679050 0.734092i \(-0.262392\pi\)
0.679050 + 0.734092i \(0.262392\pi\)
\(198\) 664787. 491734.i 1.20509 0.891389i
\(199\) 215092. 0.385027 0.192513 0.981294i \(-0.438336\pi\)
0.192513 + 0.981294i \(0.438336\pi\)
\(200\) −123918. −0.219059
\(201\) −331331. 297649.i −0.578458 0.519654i
\(202\) −1.34418e6 −2.31781
\(203\) 45977.6i 0.0783080i
\(204\) 11604.4 + 10424.8i 0.0195231 + 0.0175384i
\(205\) 634059.i 1.05377i
\(206\) −986584. −1.61982
\(207\) −143753. + 15440.2i −0.233180 + 0.0250453i
\(208\) 661616.i 1.06035i
\(209\) −257527. + 150845.i −0.407810 + 0.238872i
\(210\) −40605.0 36477.3i −0.0635377 0.0570788i
\(211\) 197876.i 0.305975i −0.988228 0.152988i \(-0.951111\pi\)
0.988228 0.152988i \(-0.0488895\pi\)
\(212\) 491777.i 0.751499i
\(213\) 617783. 687690.i 0.933011 1.03859i
\(214\) −390081. −0.582264
\(215\) −817950. −1.20679
\(216\) 148409. 205742.i 0.216434 0.300047i
\(217\) 35524.7i 0.0512132i
\(218\) 1.03220e6i 1.47104i
\(219\) 754300. 839656.i 1.06276 1.18302i
\(220\) 493261. 288924.i 0.687100 0.402464i
\(221\) 23409.0i 0.0322406i
\(222\) −1.01454e6 911406.i −1.38161 1.24116i
\(223\) 122438. 0.164875 0.0824374 0.996596i \(-0.473730\pi\)
0.0824374 + 0.996596i \(0.473730\pi\)
\(224\) 94311.8i 0.125587i
\(225\) 48017.9 + 447063.i 0.0632335 + 0.588725i
\(226\) 1.62394e6i 2.11494i
\(227\) −385235. −0.496205 −0.248102 0.968734i \(-0.579807\pi\)
−0.248102 + 0.968734i \(0.579807\pi\)
\(228\) −309109. + 344087.i −0.393799 + 0.438361i
\(229\) 651870. 0.821434 0.410717 0.911763i \(-0.365278\pi\)
0.410717 + 0.911763i \(0.365278\pi\)
\(230\) −180118. −0.224511
\(231\) −70886.7 14519.2i −0.0874047 0.0179025i
\(232\) −266210. −0.324717
\(233\) 830485. 1.00217 0.501085 0.865398i \(-0.332934\pi\)
0.501085 + 0.865398i \(0.332934\pi\)
\(234\) 1.91209e6 205373.i 2.28280 0.245190i
\(235\) 121461. 0.143472
\(236\) 1.21077e6i 1.41508i
\(237\) −280727. + 312494.i −0.324648 + 0.361385i
\(238\) 2459.87i 0.00281495i
\(239\) −1.00232e6 −1.13504 −0.567518 0.823361i \(-0.692096\pi\)
−0.567518 + 0.823361i \(0.692096\pi\)
\(240\) −263653. + 293488.i −0.295464 + 0.328899i
\(241\) 1.51157e6i 1.67643i −0.545341 0.838214i \(-0.683600\pi\)
0.545341 0.838214i \(-0.316400\pi\)
\(242\) 667910. 1.19111e6i 0.733128 1.30742i
\(243\) −799769. 455695.i −0.868858 0.495061i
\(244\) 1.45407e6i 1.56354i
\(245\) 595272.i 0.633578i
\(246\) 1.74628e6 + 1.56876e6i 1.83982 + 1.65279i
\(247\) −694110. −0.723912
\(248\) 205688. 0.212364
\(249\) −376384. 338122.i −0.384710 0.345602i
\(250\) 1.50618e6i 1.52415i
\(251\) 605116.i 0.606254i −0.952950 0.303127i \(-0.901969\pi\)
0.952950 0.303127i \(-0.0980306\pi\)
\(252\) −111499. + 11975.9i −0.110604 + 0.0118797i
\(253\) −206030. + 120681.i −0.202362 + 0.118532i
\(254\) 629173.i 0.611908i
\(255\) 9328.47 10384.1i 0.00898379 0.0100004i
\(256\) 358990. 0.342360
\(257\) 825395.i 0.779523i −0.920916 0.389762i \(-0.872557\pi\)
0.920916 0.389762i \(-0.127443\pi\)
\(258\) −2.02374e6 + 2.25274e6i −1.89280 + 2.10699i
\(259\) 119342.i 0.110546i
\(260\) 1.32948e6 1.21969
\(261\) 103156. + 960412.i 0.0937328 + 0.872683i
\(262\) 751306. 0.676182
\(263\) 1.11413e6 0.993218 0.496609 0.867974i \(-0.334578\pi\)
0.496609 + 0.867974i \(0.334578\pi\)
\(264\) 84066.4 410434.i 0.0742356 0.362438i
\(265\) −440060. −0.384944
\(266\) 72938.6 0.0632053
\(267\) 112593. 125334.i 0.0966574 0.107595i
\(268\) −1.13997e6 −0.969518
\(269\) 895983.i 0.754952i 0.926019 + 0.377476i \(0.123208\pi\)
−0.926019 + 0.377476i \(0.876792\pi\)
\(270\) −930028. 670862.i −0.776402 0.560046i
\(271\) 983707.i 0.813659i −0.913504 0.406830i \(-0.866634\pi\)
0.913504 0.406830i \(-0.133366\pi\)
\(272\) −17779.6 −0.0145714
\(273\) −125187. 112461.i −0.101660 0.0913261i
\(274\) 1.49563e6i 1.20350i
\(275\) 375309. + 640740.i 0.299266 + 0.510916i
\(276\) −247297. + 275280.i −0.195409 + 0.217522i
\(277\) 1.30268e6i 1.02009i −0.860149 0.510043i \(-0.829629\pi\)
0.860149 0.510043i \(-0.170371\pi\)
\(278\) 3.26925e6i 2.53709i
\(279\) −79703.5 742066.i −0.0613009 0.570732i
\(280\) −27655.5 −0.0210808
\(281\) −1.05493e6 −0.796997 −0.398499 0.917169i \(-0.630469\pi\)
−0.398499 + 0.917169i \(0.630469\pi\)
\(282\) 300513. 334519.i 0.225030 0.250494i
\(283\) 964342.i 0.715756i −0.933768 0.357878i \(-0.883500\pi\)
0.933768 0.357878i \(-0.116500\pi\)
\(284\) 2.36605e6i 1.74072i
\(285\) 307902. + 276602.i 0.224543 + 0.201717i
\(286\) 2.74044e6 1.60519e6i 1.98110 1.16041i
\(287\) 205418.i 0.147209i
\(288\) 211598. + 1.97005e6i 0.150325 + 1.39958i
\(289\) −1.41923e6 −0.999557
\(290\) 1.20336e6i 0.840237i
\(291\) −1.22282e6 1.09852e6i −0.846509 0.760456i
\(292\) 2.88890e6i 1.98278i
\(293\) 113600. 0.0773056 0.0386528 0.999253i \(-0.487693\pi\)
0.0386528 + 0.999253i \(0.487693\pi\)
\(294\) −1.63946e6 1.47279e6i −1.10619 0.993743i
\(295\) 1.08344e6 0.724853
\(296\) −690989. −0.458397
\(297\) −1.51331e6 144246.i −0.995488 0.0948886i
\(298\) −1.93857e6 −1.26457
\(299\) −555309. −0.359217
\(300\) 856105. + 769077.i 0.549192 + 0.493363i
\(301\) 264993. 0.168585
\(302\) 1.29485e6i 0.816960i
\(303\) 1.83831e6 + 1.65144e6i 1.15030 + 1.03337i
\(304\) 527191.i 0.327178i
\(305\) 1.30115e6 0.800900
\(306\) −5518.99 51383.6i −0.00336942 0.0313705i
\(307\) 873188.i 0.528764i 0.964418 + 0.264382i \(0.0851679\pi\)
−0.964418 + 0.264382i \(0.914832\pi\)
\(308\) −159803. + 93603.4i −0.0959860 + 0.0562231i
\(309\) 1.34926e6 + 1.21210e6i 0.803897 + 0.722176i
\(310\) 929783.i 0.549512i
\(311\) 2.69881e6i 1.58223i 0.611665 + 0.791117i \(0.290500\pi\)
−0.611665 + 0.791117i \(0.709500\pi\)
\(312\) 651148. 724831.i 0.378698 0.421551i
\(313\) 1.55310e6 0.896060 0.448030 0.894018i \(-0.352126\pi\)
0.448030 + 0.894018i \(0.352126\pi\)
\(314\) 1.74700e6 0.999925
\(315\) 10716.4 + 99773.5i 0.00608519 + 0.0566551i
\(316\) 1.07516e6i 0.605696i
\(317\) 710129.i 0.396907i −0.980110 0.198454i \(-0.936408\pi\)
0.980110 0.198454i \(-0.0635920\pi\)
\(318\) −1.08878e6 + 1.21198e6i −0.603769 + 0.672091i
\(319\) 806265. + 1.37648e6i 0.443610 + 0.757345i
\(320\) 1.65853e6i 0.905417i
\(321\) 533479. + 479247.i 0.288971 + 0.259596i
\(322\) 58353.1 0.0313635
\(323\) 18652.8i 0.00994807i
\(324\) −2.30221e6 + 500321.i −1.21838 + 0.264780i
\(325\) 1.72698e6i 0.906939i
\(326\) −3.07911e6 −1.60465
\(327\) 1.26815e6 1.41165e6i 0.655844 0.730059i
\(328\) 1.18937e6 0.610424
\(329\) −39349.9 −0.0200426
\(330\) −1.85531e6 380010.i −0.937844 0.192092i
\(331\) −1.75491e6 −0.880408 −0.440204 0.897898i \(-0.645094\pi\)
−0.440204 + 0.897898i \(0.645094\pi\)
\(332\) −1.29498e6 −0.644788
\(333\) 267756. + 2.49290e6i 0.132321 + 1.23195i
\(334\) −4.35902e6 −2.13807
\(335\) 1.02009e6i 0.496620i
\(336\) 85416.3 95081.9i 0.0412755 0.0459462i
\(337\) 2.45919e6i 1.17955i 0.807566 + 0.589777i \(0.200785\pi\)
−0.807566 + 0.589777i \(0.799215\pi\)
\(338\) 4.23798e6 2.01775
\(339\) 1.99514e6 2.22091e6i 0.942920 1.04962i
\(340\) 35727.2i 0.0167610i
\(341\) −622964. 1.06354e6i −0.290119 0.495301i
\(342\) 1.52359e6 163646.i 0.704375 0.0756552i
\(343\) 387251.i 0.177728i
\(344\) 1.53431e6i 0.699064i
\(345\) 246331. + 221290.i 0.111422 + 0.100095i
\(346\) 3.70799e6 1.66513
\(347\) 267251. 0.119150 0.0595752 0.998224i \(-0.481025\pi\)
0.0595752 + 0.998224i \(0.481025\pi\)
\(348\) 1.83915e6 + 1.65219e6i 0.814082 + 0.731325i
\(349\) 1.61566e6i 0.710044i −0.934858 0.355022i \(-0.884473\pi\)
0.934858 0.355022i \(-0.115527\pi\)
\(350\) 181475.i 0.0791855i
\(351\) −2.86731e6 2.06829e6i −1.24224 0.896075i
\(352\) 1.65386e6 + 2.82352e6i 0.711445 + 1.21460i
\(353\) 2.34705e6i 1.00250i 0.865302 + 0.501252i \(0.167127\pi\)
−0.865302 + 0.501252i \(0.832873\pi\)
\(354\) 2.68060e6 2.98393e6i 1.13690 1.26555i
\(355\) −2.11723e6 −0.891655
\(356\) 431223.i 0.180334i
\(357\) −3022.16 + 3364.15i −0.00125501 + 0.00139703i
\(358\) 1.74049e6i 0.717734i
\(359\) −2.46802e6 −1.01068 −0.505338 0.862922i \(-0.668632\pi\)
−0.505338 + 0.862922i \(0.668632\pi\)
\(360\) −577689. + 62048.1i −0.234929 + 0.0252332i
\(361\) 1.92302e6 0.776631
\(362\) −2.32595e6 −0.932888
\(363\) −2.37682e6 + 808394.i −0.946740 + 0.322000i
\(364\) −430715. −0.170387
\(365\) −2.58509e6 −1.01565
\(366\) 3.21925e6 3.58354e6i 1.25618 1.39833i
\(367\) 775093. 0.300392 0.150196 0.988656i \(-0.452009\pi\)
0.150196 + 0.988656i \(0.452009\pi\)
\(368\) 421769.i 0.162351i
\(369\) −460876. 4.29091e6i −0.176205 1.64053i
\(370\) 3.12352e6i 1.18615i
\(371\) 142567. 0.0537755
\(372\) −1.42102e6 1.27657e6i −0.532407 0.478284i
\(373\) 1.09178e6i 0.406315i 0.979146 + 0.203158i \(0.0651204\pi\)
−0.979146 + 0.203158i \(0.934880\pi\)
\(374\) −43136.5 73644.0i −0.0159465 0.0272244i
\(375\) 1.85048e6 2.05987e6i 0.679525 0.756419i
\(376\) 227836.i 0.0831099i
\(377\) 3.71001e6i 1.34438i
\(378\) 301303. + 217341.i 0.108461 + 0.0782369i
\(379\) 171895. 0.0614701 0.0307351 0.999528i \(-0.490215\pi\)
0.0307351 + 0.999528i \(0.490215\pi\)
\(380\) 1.05936e6 0.376343
\(381\) 772993. 860464.i 0.272812 0.303683i
\(382\) 5.35294e6i 1.87687i
\(383\) 364164.i 0.126853i −0.997987 0.0634263i \(-0.979797\pi\)
0.997987 0.0634263i \(-0.0202028\pi\)
\(384\) 1.54205e6 + 1.38530e6i 0.533669 + 0.479418i
\(385\) 83759.8 + 142997.i 0.0287994 + 0.0491673i
\(386\) 47881.9i 0.0163570i
\(387\) 5.53537e6 594540.i 1.87875 0.201792i
\(388\) −4.20722e6 −1.41878
\(389\) 1.57588e6i 0.528020i −0.964520 0.264010i \(-0.914955\pi\)
0.964520 0.264010i \(-0.0850451\pi\)
\(390\) −3.27650e6 2.94342e6i −1.09081 0.979920i
\(391\) 14922.8i 0.00493639i
\(392\) −1.11661e6 −0.367017
\(393\) −1.02749e6 923044.i −0.335582 0.301468i
\(394\) −6.27272e6 −2.03571
\(395\) 962091. 0.310258
\(396\) −3.12807e6 + 2.31379e6i −1.00239 + 0.741457i
\(397\) −2.37799e6 −0.757241 −0.378620 0.925552i \(-0.623601\pi\)
−0.378620 + 0.925552i \(0.623601\pi\)
\(398\) −1.82382e6 −0.577132
\(399\) −99751.7 89611.3i −0.0313681 0.0281793i
\(400\) −1.31167e6 −0.409898
\(401\) 794365.i 0.246694i −0.992364 0.123347i \(-0.960637\pi\)
0.992364 0.123347i \(-0.0393629\pi\)
\(402\) 2.80945e6 + 2.52385e6i 0.867073 + 0.778930i
\(403\) 2.86656e6i 0.879221i
\(404\) 6.32484e6 1.92795
\(405\) 447705. + 2.06010e6i 0.135630 + 0.624094i
\(406\) 389857.i 0.117379i
\(407\) 2.09278e6 + 3.57287e6i 0.626237 + 1.06913i
\(408\) −19478.4 17498.3i −0.00579300 0.00520411i
\(409\) 2.20976e6i 0.653185i 0.945165 + 0.326593i \(0.105901\pi\)
−0.945165 + 0.326593i \(0.894099\pi\)
\(410\) 5.37636e6i 1.57953i
\(411\) 1.83751e6 2.04544e6i 0.536567 0.597285i
\(412\) 4.64224e6 1.34736
\(413\) −351005. −0.101260
\(414\) 1.21892e6 130921.i 0.349522 0.0375414i
\(415\) 1.15879e6i 0.330283i
\(416\) 7.61019e6i 2.15607i
\(417\) −4.01656e6 + 4.47107e6i −1.13113 + 1.25913i
\(418\) 2.18365e6 1.27906e6i 0.611282 0.358054i
\(419\) 7.13523e6i 1.98551i −0.120136 0.992757i \(-0.538333\pi\)
0.120136 0.992757i \(-0.461667\pi\)
\(420\) 191062. + 171639.i 0.0528507 + 0.0474781i
\(421\) 608256. 0.167256 0.0836279 0.996497i \(-0.473349\pi\)
0.0836279 + 0.996497i \(0.473349\pi\)
\(422\) 1.67784e6i 0.458638i
\(423\) −821969. + 88285.7i −0.223360 + 0.0239905i
\(424\) 825464.i 0.222989i
\(425\) 46409.1 0.0124632
\(426\) −5.23835e6 + 5.83112e6i −1.39853 + 1.55678i
\(427\) −421537. −0.111883
\(428\) 1.83547e6 0.484327
\(429\) −5.71998e6 1.17158e6i −1.50055 0.307348i
\(430\) 6.93563e6 1.80890
\(431\) −3.42629e6 −0.888445 −0.444222 0.895917i \(-0.646520\pi\)
−0.444222 + 0.895917i \(0.646520\pi\)
\(432\) 1.57091e6 2.17778e6i 0.404988 0.561442i
\(433\) 6.94631e6 1.78047 0.890234 0.455503i \(-0.150541\pi\)
0.890234 + 0.455503i \(0.150541\pi\)
\(434\) 301224.i 0.0767654i
\(435\) 1.47844e6 1.64573e6i 0.374610 0.417000i
\(436\) 4.85689e6i 1.22361i
\(437\) −442483. −0.110839
\(438\) −6.39592e6 + 7.11968e6i −1.59301 + 1.77327i
\(439\) 2.33491e6i 0.578240i 0.957293 + 0.289120i \(0.0933627\pi\)
−0.957293 + 0.289120i \(0.906637\pi\)
\(440\) −827955. + 484969.i −0.203880 + 0.119421i
\(441\) 432683. + 4.02842e6i 0.105943 + 0.986367i
\(442\) 198492.i 0.0483266i
\(443\) 101850.i 0.0246576i −0.999924 0.0123288i \(-0.996076\pi\)
0.999924 0.0123288i \(-0.00392448\pi\)
\(444\) 4.77378e6 + 4.28850e6i 1.14923 + 1.03240i
\(445\) −385874. −0.0923730
\(446\) −1.03819e6 −0.247137
\(447\) 2.65122e6 + 2.38170e6i 0.627590 + 0.563792i
\(448\) 537318.i 0.126484i
\(449\) 3.38226e6i 0.791756i −0.918303 0.395878i \(-0.870440\pi\)
0.918303 0.395878i \(-0.129560\pi\)
\(450\) −407157. 3.79077e6i −0.0947831 0.882462i
\(451\) −3.60221e6 6.14982e6i −0.833927 1.42371i
\(452\) 7.64121e6i 1.75920i
\(453\) −1.59083e6 + 1.77085e6i −0.364232 + 0.405448i
\(454\) 3.26651e6 0.743781
\(455\) 385419.i 0.0872780i
\(456\) 518849. 577562.i 0.116850 0.130073i
\(457\) 409738.i 0.0917731i −0.998947 0.0458865i \(-0.985389\pi\)
0.998947 0.0458865i \(-0.0146113\pi\)
\(458\) −5.52739e6 −1.23128
\(459\) −55581.3 + 77053.3i −0.0123139 + 0.0170710i
\(460\) 847520. 0.186748
\(461\) 4.36832e6 0.957331 0.478666 0.877997i \(-0.341121\pi\)
0.478666 + 0.877997i \(0.341121\pi\)
\(462\) 601068. + 123113.i 0.131014 + 0.0268348i
\(463\) −597751. −0.129589 −0.0647945 0.997899i \(-0.520639\pi\)
−0.0647945 + 0.997899i \(0.520639\pi\)
\(464\) −2.81783e6 −0.607603
\(465\) −1.14232e6 + 1.27158e6i −0.244994 + 0.272717i
\(466\) −7.04191e6 −1.50219
\(467\) 1.49460e6i 0.317126i 0.987349 + 0.158563i \(0.0506860\pi\)
−0.987349 + 0.158563i \(0.949314\pi\)
\(468\) −8.99707e6 + 966354.i −1.89883 + 0.203949i
\(469\) 330479.i 0.0693765i
\(470\) −1.02990e6 −0.215055
\(471\) −2.38921e6 2.14633e6i −0.496252 0.445805i
\(472\) 2.03232e6i 0.419891i
\(473\) 7.93340e6 4.64693e6i 1.63045 0.955023i
\(474\) 2.38036e6 2.64972e6i 0.486628 0.541695i
\(475\) 1.37609e6i 0.279843i
\(476\) 11574.6i 0.00234147i
\(477\) 2.97804e6 319865.i 0.599288 0.0643680i
\(478\) 8.49891e6 1.70135
\(479\) −1.50621e6 −0.299948 −0.149974 0.988690i \(-0.547919\pi\)
−0.149974 + 0.988690i \(0.547919\pi\)
\(480\) 3.03265e6 3.37582e6i 0.600785 0.668769i
\(481\) 9.62991e6i 1.89784i
\(482\) 1.28170e7i 2.51286i
\(483\) −79804.4 71691.8i −0.0155654 0.0139830i
\(484\) −3.14276e6 + 5.60462e6i −0.609815 + 1.08751i
\(485\) 3.76477e6i 0.726749i
\(486\) 6.78146e6 + 3.86396e6i 1.30237 + 0.742066i
\(487\) −7.28245e6 −1.39141 −0.695705 0.718328i \(-0.744908\pi\)
−0.695705 + 0.718328i \(0.744908\pi\)
\(488\) 2.44070e6i 0.463943i
\(489\) 4.21103e6 + 3.78295e6i 0.796372 + 0.715416i
\(490\) 5.04747e6i 0.949694i
\(491\) 8.22691e6 1.54004 0.770022 0.638017i \(-0.220245\pi\)
0.770022 + 0.638017i \(0.220245\pi\)
\(492\) −8.21689e6 7.38160e6i −1.53036 1.37479i
\(493\) 99699.4 0.0184746
\(494\) 5.88555e6 1.08510
\(495\) 2.07046e6 + 2.79911e6i 0.379800 + 0.513460i
\(496\) 2.17721e6 0.397371
\(497\) 685923. 0.124562
\(498\) 3.19146e6 + 2.86703e6i 0.576656 + 0.518035i
\(499\) −8.77367e6 −1.57736 −0.788678 0.614806i \(-0.789234\pi\)
−0.788678 + 0.614806i \(0.789234\pi\)
\(500\) 7.08715e6i 1.26779i
\(501\) 5.96144e6 + 5.35543e6i 1.06110 + 0.953234i
\(502\) 5.13095e6i 0.908737i
\(503\) −4.73850e6 −0.835066 −0.417533 0.908662i \(-0.637105\pi\)
−0.417533 + 0.908662i \(0.637105\pi\)
\(504\) 187155. 20101.9i 0.0328190 0.00352501i
\(505\) 5.65970e6i 0.987563i
\(506\) 1.74698e6 1.02328e6i 0.303328 0.177672i
\(507\) −5.79591e6 5.20672e6i −1.00139 0.899589i
\(508\) 2.96049e6i 0.508985i
\(509\) 1.42203e6i 0.243285i 0.992574 + 0.121642i \(0.0388161\pi\)
−0.992574 + 0.121642i \(0.961184\pi\)
\(510\) −79098.6 + 88049.4i −0.0134662 + 0.0149900i
\(511\) 837498. 0.141883
\(512\) −7.29926e6 −1.23056
\(513\) −2.28474e6 1.64806e6i −0.383303 0.276490i
\(514\) 6.99875e6i 1.16846i
\(515\) 4.15405e6i 0.690165i
\(516\) 9.52242e6 1.06000e7i 1.57443 1.75259i
\(517\) −1.17806e6 + 690042.i −0.193839 + 0.113540i
\(518\) 1.01193e6i 0.165702i
\(519\) −5.07108e6 4.55558e6i −0.826385 0.742378i
\(520\) −2.23158e6 −0.361912
\(521\) 5.82338e6i 0.939898i −0.882694 0.469949i \(-0.844272\pi\)
0.882694 0.469949i \(-0.155728\pi\)
\(522\) −874684. 8.14360e6i −0.140500 1.30810i
\(523\) 7.18394e6i 1.14844i −0.818701 0.574220i \(-0.805305\pi\)
0.818701 0.574220i \(-0.194695\pi\)
\(524\) −3.53517e6 −0.562448
\(525\) −222957. + 248187.i −0.0353039 + 0.0392989i
\(526\) −9.44698e6 −1.48877
\(527\) −77033.1 −0.0120823
\(528\) 889842. 4.34444e6i 0.138908 0.678186i
\(529\) 6.08234e6 0.945000
\(530\) 3.73139e6 0.577007
\(531\) −7.33203e6 + 787516.i −1.12846 + 0.121206i
\(532\) −343203. −0.0525741
\(533\) 1.65755e7i 2.52726i
\(534\) −954711. + 1.06275e6i −0.144883 + 0.161278i
\(535\) 1.64245e6i 0.248089i
\(536\) 1.91348e6 0.287681
\(537\) −2.13834e6 + 2.38031e6i −0.319993 + 0.356203i
\(538\) 7.59729e6i 1.13163i
\(539\) 3.38185e6 + 5.77361e6i 0.501398 + 0.856004i
\(540\) 4.37612e6 + 3.15665e6i 0.645811 + 0.465846i
\(541\) 6.78324e6i 0.996424i −0.867055 0.498212i \(-0.833990\pi\)
0.867055 0.498212i \(-0.166010\pi\)
\(542\) 8.34112e6i 1.21962i
\(543\) 3.18100e6 + 2.85763e6i 0.462982 + 0.415917i
\(544\) 204509. 0.0296289
\(545\) −4.34612e6 −0.626773
\(546\) 1.06149e6 + 953587.i 0.152383 + 0.136892i
\(547\) 1.36297e6i 0.194768i 0.995247 + 0.0973842i \(0.0310476\pi\)
−0.995247 + 0.0973842i \(0.968952\pi\)
\(548\) 7.03748e6i 1.00107i
\(549\) −8.80536e6 + 945762.i −1.24686 + 0.133922i
\(550\) −3.18235e6 5.43301e6i −0.448581 0.765832i
\(551\) 2.95622e6i 0.414819i
\(552\) 415095. 462067.i 0.0579830 0.0645443i
\(553\) −311691. −0.0433422
\(554\) 1.10458e7i 1.52905i
\(555\) 3.83751e6 4.27176e6i 0.528831 0.588673i
\(556\) 1.53830e7i 2.11035i
\(557\) 7.72310e6 1.05476 0.527380 0.849629i \(-0.323174\pi\)
0.527380 + 0.849629i \(0.323174\pi\)
\(558\) 675828. + 6.29218e6i 0.0918863 + 0.855492i
\(559\) 2.13828e7 2.89424
\(560\) −292734. −0.0394460
\(561\) −31484.0 + 153713.i −0.00422360 + 0.0206207i
\(562\) 8.94502e6 1.19465
\(563\) −7.28192e6 −0.968222 −0.484111 0.875007i \(-0.660857\pi\)
−0.484111 + 0.875007i \(0.660857\pi\)
\(564\) −1.41402e6 + 1.57403e6i −0.187180 + 0.208361i
\(565\) −6.83764e6 −0.901125
\(566\) 8.17692e6i 1.07287i
\(567\) −145044. 667414.i −0.0189471 0.0871842i
\(568\) 3.97149e6i 0.516515i
\(569\) −8.25749e6 −1.06922 −0.534610 0.845099i \(-0.679542\pi\)
−0.534610 + 0.845099i \(0.679542\pi\)
\(570\) −2.61079e6 2.34538e6i −0.336577 0.302362i
\(571\) 2.50822e6i 0.321940i 0.986959 + 0.160970i \(0.0514623\pi\)
−0.986959 + 0.160970i \(0.948538\pi\)
\(572\) −1.28948e7 + 7.55303e6i −1.64787 + 0.965231i
\(573\) −6.57654e6 + 7.32074e6i −0.836780 + 0.931469i
\(574\) 1.74179e6i 0.220657i
\(575\) 1.10092e6i 0.138863i
\(576\) −1.20553e6 1.12239e7i −0.151399 1.40957i
\(577\) 1.64671e6 0.205910 0.102955 0.994686i \(-0.467170\pi\)
0.102955 + 0.994686i \(0.467170\pi\)
\(578\) 1.20340e7 1.49827
\(579\) −58827.0 + 65483.8i −0.00729257 + 0.00811779i
\(580\) 5.66227e6i 0.698909i
\(581\) 375417.i 0.0461396i
\(582\) 1.03687e7 + 9.31463e6i 1.26886 + 1.13988i
\(583\) 4.26819e6 2.50006e6i 0.520083 0.304635i
\(584\) 4.84911e6i 0.588342i
\(585\) 864728. + 8.05091e6i 0.104470 + 0.972647i
\(586\) −963249. −0.115876
\(587\) 2.51572e6i 0.301348i −0.988584 0.150674i \(-0.951856\pi\)
0.988584 0.150674i \(-0.0481443\pi\)
\(588\) 7.71424e6 + 6.93004e6i 0.920131 + 0.826595i
\(589\) 2.28414e6i 0.271290i
\(590\) −9.18679e6 −1.08651
\(591\) 8.57865e6 + 7.70658e6i 1.01030 + 0.907597i
\(592\) −7.31412e6 −0.857744
\(593\) −1.66834e6 −0.194827 −0.0974133 0.995244i \(-0.531057\pi\)
−0.0974133 + 0.995244i \(0.531057\pi\)
\(594\) 1.28317e7 + 1.22311e6i 1.49217 + 0.142232i
\(595\) 10357.4 0.00119938
\(596\) 9.12171e6 1.05187
\(597\) 2.49428e6 + 2.24072e6i 0.286424 + 0.257307i
\(598\) 4.70862e6 0.538444
\(599\) 1.36017e7i 1.54891i 0.632628 + 0.774456i \(0.281976\pi\)
−0.632628 + 0.774456i \(0.718024\pi\)
\(600\) −1.43700e6 1.29092e6i −0.162959 0.146393i
\(601\) 1.08809e7i 1.22880i −0.788996 0.614399i \(-0.789399\pi\)
0.788996 0.614399i \(-0.210601\pi\)
\(602\) −2.24695e6 −0.252698
\(603\) −741465. 6.90329e6i −0.0830420 0.773148i
\(604\) 6.09273e6i 0.679547i
\(605\) 5.01522e6 + 2.81226e6i 0.557059 + 0.312368i
\(606\) −1.55875e7 1.40030e7i −1.72423 1.54895i
\(607\) 1.54469e7i 1.70164i 0.525453 + 0.850822i \(0.323896\pi\)
−0.525453 + 0.850822i \(0.676104\pi\)
\(608\) 6.06397e6i 0.665270i
\(609\) −478972. + 533172.i −0.0523320 + 0.0582538i
\(610\) −1.10328e7 −1.20050
\(611\) −3.17522e6 −0.344089
\(612\) 25968.9 + 241779.i 0.00280269 + 0.0260939i
\(613\) 1.71306e7i 1.84128i −0.390409 0.920641i \(-0.627666\pi\)
0.390409 0.920641i \(-0.372334\pi\)
\(614\) 7.40400e6i 0.792584i
\(615\) −6.60532e6 + 7.35277e6i −0.704216 + 0.783905i
\(616\) 268234. 157116.i 0.0284815 0.0166828i
\(617\) 1.25814e7i 1.33050i 0.746620 + 0.665251i \(0.231675\pi\)
−0.746620 + 0.665251i \(0.768325\pi\)
\(618\) −1.14408e7 1.02778e7i −1.20499 1.08250i
\(619\) 8.53512e6 0.895330 0.447665 0.894201i \(-0.352256\pi\)
0.447665 + 0.894201i \(0.352256\pi\)
\(620\) 4.37497e6i 0.457084i
\(621\) −1.82786e6 1.31850e6i −0.190201 0.137199i
\(622\) 2.28839e7i 2.37167i
\(623\) 125012. 0.0129043
\(624\) 6.89240e6 7.67233e6i 0.708612 0.788798i
\(625\) −559506. −0.0572934
\(626\) −1.31691e7 −1.34314
\(627\) −4.55781e6 933545.i −0.463006 0.0948345i
\(628\) −8.22026e6 −0.831737
\(629\) 258785. 0.0260803
\(630\) −90867.6 846007.i −0.00912132 0.0849225i
\(631\) 1.89108e7 1.89076 0.945382 0.325964i \(-0.105689\pi\)
0.945382 + 0.325964i \(0.105689\pi\)
\(632\) 1.80469e6i 0.179725i
\(633\) 2.06137e6 2.29464e6i 0.204478 0.227617i
\(634\) 6.02138e6i 0.594940i
\(635\) −2.64916e6 −0.260719
\(636\) 5.12309e6 5.70282e6i 0.502215 0.559045i
\(637\) 1.55615e7i 1.51951i
\(638\) −6.83654e6 1.16716e7i −0.664944 1.13521i
\(639\) 1.43281e7 1.53894e6i 1.38815 0.149097i
\(640\) 4.74760e6i 0.458168i
\(641\) 1.39715e7i 1.34307i −0.740975 0.671533i \(-0.765636\pi\)
0.740975 0.671533i \(-0.234364\pi\)
\(642\) −4.52351e6 4.06367e6i −0.433150 0.389118i
\(643\) −8.35019e6 −0.796469 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(644\) −274573. −0.0260881
\(645\) −9.48524e6 8.52101e6i −0.897737 0.806477i
\(646\) 158163.i 0.0149115i
\(647\) 5.28911e6i 0.496732i 0.968666 + 0.248366i \(0.0798935\pi\)
−0.968666 + 0.248366i \(0.920106\pi\)
\(648\) 3.86433e6 839804.i 0.361523 0.0785671i
\(649\) −1.05084e7 + 6.15523e6i −0.979322 + 0.573631i
\(650\) 1.46435e7i 1.35945i
\(651\) 370080. 411957.i 0.0342249 0.0380978i
\(652\) 1.44884e7 1.33475
\(653\) 1.31576e7i 1.20752i −0.797167 0.603759i \(-0.793669\pi\)
0.797167 0.603759i \(-0.206331\pi\)
\(654\) −1.07530e7 + 1.19698e7i −0.983070 + 1.09431i
\(655\) 3.16340e6i 0.288105i
\(656\) 1.25894e7 1.14221
\(657\) 1.74943e7 1.87902e6i 1.58118 0.169831i
\(658\) 333659. 0.0300426
\(659\) −5.31432e6 −0.476688 −0.238344 0.971181i \(-0.576605\pi\)
−0.238344 + 0.971181i \(0.576605\pi\)
\(660\) 8.72990e6 + 1.78809e6i 0.780098 + 0.159782i
\(661\) −1.46817e7 −1.30699 −0.653496 0.756930i \(-0.726698\pi\)
−0.653496 + 0.756930i \(0.726698\pi\)
\(662\) 1.48803e7 1.31968
\(663\) −243864. + 271459.i −0.0215459 + 0.0239840i
\(664\) 2.17366e6 0.191325
\(665\) 307111.i 0.0269303i
\(666\) −2.27038e6 2.11380e7i −0.198341 1.84662i
\(667\) 2.36507e6i 0.205840i
\(668\) 2.05108e7 1.77845
\(669\) 1.41984e6 + 1.27550e6i 0.122651 + 0.110183i
\(670\) 8.64959e6i 0.744403i
\(671\) −1.26200e7 + 7.39209e6i −1.08207 + 0.633813i
\(672\) −982495. + 1.09367e6i −0.0839280 + 0.0934252i
\(673\) 9.05171e6i 0.770359i 0.922842 + 0.385179i \(0.125860\pi\)
−0.922842 + 0.385179i \(0.874140\pi\)
\(674\) 2.08522e7i 1.76808i
\(675\) −4.10045e6 + 5.68453e6i −0.346396 + 0.480214i
\(676\) −1.99413e7 −1.67836
\(677\) 1.80121e7 1.51040 0.755199 0.655495i \(-0.227540\pi\)
0.755199 + 0.655495i \(0.227540\pi\)
\(678\) −1.69174e7 + 1.88317e7i −1.41338 + 1.57332i
\(679\) 1.21968e6i 0.101525i
\(680\) 59969.2i 0.00497343i
\(681\) −4.46732e6 4.01319e6i −0.369130 0.331606i
\(682\) 5.28228e6 + 9.01808e6i 0.434871 + 0.742426i
\(683\) 4.17593e6i 0.342532i 0.985225 + 0.171266i \(0.0547857\pi\)
−0.985225 + 0.171266i \(0.945214\pi\)
\(684\) −7.16907e6 + 770013.i −0.585899 + 0.0629300i
\(685\) −6.29739e6 −0.512784
\(686\) 3.28360e6i 0.266404i
\(687\) 7.55932e6 + 6.79087e6i 0.611070 + 0.548951i
\(688\) 1.62407e7i 1.30807i
\(689\) 1.15040e7 0.923211
\(690\) −2.08871e6 1.87638e6i −0.167015 0.150037i
\(691\) −1.40556e7 −1.11983 −0.559917 0.828549i \(-0.689167\pi\)
−0.559917 + 0.828549i \(0.689167\pi\)
\(692\) −1.74474e7 −1.38505
\(693\) −670773. 906833.i −0.0530570 0.0717289i
\(694\) −2.26609e6 −0.178599
\(695\) 1.37653e7 1.08099
\(696\) −3.08707e6 2.77325e6i −0.241559 0.217003i
\(697\) −445435. −0.0347298
\(698\) 1.36996e7i 1.06431i
\(699\) 9.63059e6 + 8.65159e6i 0.745521 + 0.669735i
\(700\) 853905.i 0.0658665i
\(701\) −1.12544e7 −0.865021 −0.432510 0.901629i \(-0.642372\pi\)
−0.432510 + 0.901629i \(0.642372\pi\)
\(702\) 2.43127e7 + 1.75376e7i 1.86205 + 1.34316i
\(703\) 7.67333e6i 0.585593i
\(704\) −9.42244e6 1.60863e7i −0.716525 1.22328i
\(705\) 1.40850e6 + 1.26532e6i 0.106730 + 0.0958799i
\(706\) 1.99013e7i 1.50269i
\(707\) 1.83359e6i 0.137960i
\(708\) −1.26132e7 + 1.40405e7i −0.945676 + 1.05269i
\(709\) −1.03584e7 −0.773886 −0.386943 0.922104i \(-0.626469\pi\)
−0.386943 + 0.922104i \(0.626469\pi\)
\(710\) 1.79526e7 1.33654
\(711\) −6.51082e6 + 699311.i −0.483016 + 0.0518796i
\(712\) 723821.i 0.0535096i
\(713\) 1.82738e6i 0.134619i
\(714\) 25625.8 28525.6i 0.00188118 0.00209406i
\(715\) 6.75873e6 + 1.15387e7i 0.494424 + 0.844097i
\(716\) 8.18964e6i 0.597011i
\(717\) −1.16232e7 1.04416e7i −0.844360 0.758526i
\(718\) 2.09270e7 1.51494
\(719\) 2.24287e7i 1.61802i 0.587798 + 0.809008i \(0.299995\pi\)
−0.587798 + 0.809008i \(0.700005\pi\)
\(720\) −6.11483e6 + 656779.i −0.439595 + 0.0472159i
\(721\) 1.34580e6i 0.0964142i
\(722\) −1.63058e7 −1.16412
\(723\) 1.57468e7 1.75287e7i 1.12033 1.24711i
\(724\) 1.09445e7 0.775976
\(725\) 7.35522e6 0.519697
\(726\) 2.01537e7 6.85459e6i 1.41910 0.482659i
\(727\) −997757. −0.0700146 −0.0350073 0.999387i \(-0.511145\pi\)
−0.0350073 + 0.999387i \(0.511145\pi\)
\(728\) 722969. 0.0505581
\(729\) −4.52720e6 1.36160e7i −0.315508 0.948923i
\(730\) 2.19197e7 1.52240
\(731\) 574620.i 0.0397729i
\(732\) −1.51478e7 + 1.68619e7i −1.04489 + 1.16313i
\(733\) 7.84829e6i 0.539529i 0.962926 + 0.269765i \(0.0869459\pi\)
−0.962926 + 0.269765i \(0.913054\pi\)
\(734\) −6.57223e6 −0.450270
\(735\) 6.20125e6 6.90298e6i 0.423410 0.471323i
\(736\) 4.85136e6i 0.330118i
\(737\) −5.79530e6 9.89393e6i −0.393013 0.670965i
\(738\) 3.90790e6 + 3.63838e7i 0.264120 + 2.45905i
\(739\) 1.45015e7i 0.976793i −0.872622 0.488396i \(-0.837582\pi\)
0.872622 0.488396i \(-0.162418\pi\)
\(740\) 1.46973e7i 0.986639i
\(741\) −8.04915e6 7.23090e6i −0.538523 0.483779i
\(742\) −1.20887e6 −0.0806062
\(743\) −1.82193e7 −1.21076 −0.605382 0.795935i \(-0.706979\pi\)
−0.605382 + 0.795935i \(0.706979\pi\)
\(744\) 2.38523e6 + 2.14276e6i 0.157979 + 0.141919i
\(745\) 8.16243e6i 0.538802i
\(746\) 9.25750e6i 0.609041i
\(747\) −842287. 7.84197e6i −0.0552279 0.514190i
\(748\) 202973. + 346522.i 0.0132643 + 0.0226452i
\(749\) 532108.i 0.0346573i
\(750\) −1.56907e7 + 1.74662e7i −1.01857 + 1.13383i
\(751\) 7.12675e6 0.461097 0.230548 0.973061i \(-0.425948\pi\)
0.230548 + 0.973061i \(0.425948\pi\)
\(752\) 2.41164e6i 0.155514i
\(753\) 6.30381e6 7.01714e6i 0.405150 0.450996i
\(754\) 3.14582e7i 2.01514i
\(755\) 5.45200e6 0.348087
\(756\) −1.41774e6 1.02267e6i −0.0902180 0.0650774i
\(757\) 1.78957e7 1.13503 0.567516 0.823362i \(-0.307904\pi\)
0.567516 + 0.823362i \(0.307904\pi\)
\(758\) −1.45754e6 −0.0921399
\(759\) −3.64638e6 746864.i −0.229751 0.0470584i
\(760\) −1.77817e6 −0.111671
\(761\) 1.04149e7 0.651916 0.325958 0.945384i \(-0.394313\pi\)
0.325958 + 0.945384i \(0.394313\pi\)
\(762\) −6.55442e6 + 7.29612e6i −0.408928 + 0.455202i
\(763\) 1.40802e6 0.0875585
\(764\) 2.51876e7i 1.56118i
\(765\) 216352. 23237.9i 0.0133662 0.00143563i
\(766\) 3.08784e6i 0.190144i
\(767\) −2.83232e7 −1.73842
\(768\) 4.16298e6 + 3.73979e6i 0.254684 + 0.228794i
\(769\) 1.29678e7i 0.790772i −0.918515 0.395386i \(-0.870611\pi\)
0.918515 0.395386i \(-0.129389\pi\)
\(770\) −710222. 1.21251e6i −0.0431685 0.0736988i
\(771\) 8.59856e6 9.57157e6i 0.520943 0.579892i
\(772\) 225302.i 0.0136057i
\(773\) 9.88927e6i 0.595272i 0.954679 + 0.297636i \(0.0961982\pi\)
−0.954679 + 0.297636i \(0.903802\pi\)
\(774\) −4.69359e7 + 5.04127e6i −2.81613 + 0.302474i
\(775\) −5.68303e6 −0.339880