Newspace parameters
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.29266605383\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - 6 x^{15} - 195 x^{14} - 642 x^{13} + 89670 x^{12} + 53946 x^{11} + 91115757 x^{10} - 2121785838 x^{9} + 37710373995 x^{8} - 835758339660 x^{7} + \cdots + 92\!\cdots\!40 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{11}\cdot 3^{10} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 6 x^{15} - 195 x^{14} - 642 x^{13} + 89670 x^{12} + 53946 x^{11} + 91115757 x^{10} - 2121785838 x^{9} + 37710373995 x^{8} - 835758339660 x^{7} + \cdots + 92\!\cdots\!40 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 15\!\cdots\!79 \nu^{15} + \cdots - 29\!\cdots\!92 ) / 36\!\cdots\!44 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 11\!\cdots\!21 \nu^{15} + \cdots + 16\!\cdots\!20 ) / 11\!\cdots\!32 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 11\!\cdots\!21 \nu^{15} + \cdots - 16\!\cdots\!20 ) / 11\!\cdots\!32 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 32\!\cdots\!69 \nu^{15} + \cdots + 33\!\cdots\!64 ) / 19\!\cdots\!76 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 67\!\cdots\!86 \nu^{15} + \cdots - 14\!\cdots\!80 ) / 33\!\cdots\!96 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 11\!\cdots\!67 \nu^{15} + \cdots + 30\!\cdots\!36 ) / 49\!\cdots\!44 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 15\!\cdots\!23 \nu^{15} + \cdots + 23\!\cdots\!20 ) / 49\!\cdots\!44 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 17\!\cdots\!31 \nu^{15} + \cdots + 16\!\cdots\!28 ) / 29\!\cdots\!64 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 10\!\cdots\!42 \nu^{15} + \cdots + 15\!\cdots\!72 ) / 16\!\cdots\!99 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 10\!\cdots\!55 \nu^{15} + \cdots + 87\!\cdots\!24 ) / 14\!\cdots\!32 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 89\!\cdots\!17 \nu^{15} + \cdots - 19\!\cdots\!40 ) / 55\!\cdots\!16 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 17\!\cdots\!65 \nu^{15} + \cdots - 30\!\cdots\!60 ) / 99\!\cdots\!88 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 49\!\cdots\!76 \nu^{15} + \cdots - 18\!\cdots\!60 ) / 23\!\cdots\!56 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 54\!\cdots\!65 \nu^{15} + \cdots - 32\!\cdots\!20 ) / 18\!\cdots\!72 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 73\!\cdots\!99 \nu^{15} + \cdots + 73\!\cdots\!52 ) / 24\!\cdots\!72 \)
|
\(\nu\) | \(=\) |
\( \beta_{3} + \beta_{2} \)
|
\(\nu^{2}\) | \(=\) |
\( -2\beta_{11} - 2\beta_{10} + 2\beta_{9} - 2\beta_{8} + \beta_{6} - 4\beta_{2} + 28 \)
|
\(\nu^{3}\) | \(=\) |
\( 6 \beta_{15} + 2 \beta_{14} - 18 \beta_{13} + 3 \beta_{12} + 12 \beta_{11} - 51 \beta_{10} - 24 \beta_{9} + 3 \beta_{8} - 3 \beta_{7} - 12 \beta_{6} - 9 \beta_{5} - 6 \beta_{4} + 78 \beta_{3} + 99 \beta_{2} + 30 \beta _1 + 294 \)
|
\(\nu^{4}\) | \(=\) |
\( - 372 \beta_{15} + 112 \beta_{14} - 420 \beta_{13} - 224 \beta_{12} - 356 \beta_{11} - 330 \beta_{10} - 802 \beta_{9} - 1140 \beta_{8} + 80 \beta_{7} + 317 \beta_{6} + 132 \beta_{5} + 16 \beta_{4} - 1512 \beta_{3} + \cdots - 14861 \)
|
\(\nu^{5}\) | \(=\) |
\( 10546 \beta_{15} + 2264 \beta_{14} + 385 \beta_{13} + 3670 \beta_{12} + 2685 \beta_{11} - 8331 \beta_{10} - 6777 \beta_{9} + 11703 \beta_{8} - 2205 \beta_{7} - 3157 \beta_{6} - 3825 \beta_{5} + 1718 \beta_{4} + \cdots - 46695 \)
|
\(\nu^{6}\) | \(=\) |
\( - 216177 \beta_{15} + 28482 \beta_{14} - 103968 \beta_{13} - 175044 \beta_{12} + 159864 \beta_{11} - 16848 \beta_{10} - 723825 \beta_{9} - 181116 \beta_{8} + 19110 \beta_{7} + \cdots - 40028783 \)
|
\(\nu^{7}\) | \(=\) |
\( 3944952 \beta_{15} + 377721 \beta_{14} + 2513083 \beta_{13} + 3029053 \beta_{12} - 3622161 \beta_{11} + 2633169 \beta_{10} + 3119583 \beta_{9} + 7272363 \beta_{8} - 128142 \beta_{7} + \cdots + 633552018 \)
|
\(\nu^{8}\) | \(=\) |
\( - 41284029 \beta_{15} + 5620056 \beta_{14} - 29124024 \beta_{13} - 45453096 \beta_{12} + 285952776 \beta_{11} + 73430730 \beta_{10} - 266860902 \beta_{9} + \cdots - 23981003268 \)
|
\(\nu^{9}\) | \(=\) |
\( - 596148018 \beta_{15} - 293960496 \beta_{14} + 2183715858 \beta_{13} + 310073349 \beta_{12} - 5993803422 \beta_{11} + 2392866063 \beta_{10} + 5813350506 \beta_{9} + \cdots + 459497229300 \)
|
\(\nu^{10}\) | \(=\) |
\( 44698815648 \beta_{15} - 9499750164 \beta_{14} + 1636782426 \beta_{13} + 25378702308 \beta_{12} + 160693447338 \beta_{11} + 18933574878 \beta_{10} + \cdots - 5057485863405 \)
|
\(\nu^{11}\) | \(=\) |
\( - 2073828990276 \beta_{15} - 235257555618 \beta_{14} + 48686983167 \beta_{13} - 963707954640 \beta_{12} - 3008734006437 \beta_{11} + \cdots + 62609026750263 \)
|
\(\nu^{12}\) | \(=\) |
\( 59813051150205 \beta_{15} - 5027460218316 \beta_{14} + 14118283742760 \beta_{13} + 37146417204600 \beta_{12} + 27891054717336 \beta_{11} + \cdots + 41\!\cdots\!95 \)
|
\(\nu^{13}\) | \(=\) |
\( - 15\!\cdots\!04 \beta_{15} - 53168082834627 \beta_{14} - 664617308228793 \beta_{13} - 983911535888265 \beta_{12} + 48723963283467 \beta_{11} + \cdots - 14\!\cdots\!66 \)
|
\(\nu^{14}\) | \(=\) |
\( 31\!\cdots\!79 \beta_{15} - 688692625062714 \beta_{14} + \cdots + 54\!\cdots\!26 \)
|
\(\nu^{15}\) | \(=\) |
\( - 45\!\cdots\!68 \beta_{15} + \cdots - 14\!\cdots\!70 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).
\(n\) | \(13\) | \(23\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 |
|
−10.1143 | −10.9611 | − | 11.0840i | 70.2982 | − | 88.5196i | 110.863 | + | 112.106i | − | 126.220i | −387.358 | −2.70883 | + | 242.985i | 895.310i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.2 | −10.1143 | −10.9611 | + | 11.0840i | 70.2982 | 88.5196i | 110.863 | − | 112.106i | 126.220i | −387.358 | −2.70883 | − | 242.985i | − | 895.310i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.3 | −8.47928 | 11.5964 | − | 10.4175i | 39.8981 | 35.7023i | −98.3287 | + | 88.3330i | − | 11.5666i | −66.9703 | 25.9508 | − | 241.610i | − | 302.729i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.4 | −8.47928 | 11.5964 | + | 10.4175i | 39.8981 | − | 35.7023i | −98.3287 | − | 88.3330i | 11.5666i | −66.9703 | 25.9508 | + | 241.610i | 302.729i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.5 | −4.46270 | −14.2692 | − | 6.27606i | −12.0843 | 59.8956i | 63.6794 | + | 28.0082i | − | 169.425i | 196.735 | 164.222 | + | 179.109i | − | 267.296i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.6 | −4.46270 | −14.2692 | + | 6.27606i | −12.0843 | − | 59.8956i | 63.6794 | − | 28.0082i | 169.425i | 196.735 | 164.222 | − | 179.109i | 267.296i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.7 | −3.58998 | 0.133977 | − | 15.5879i | −19.1121 | − | 11.8803i | −0.480974 | + | 55.9601i | 150.804i | 183.491 | −242.964 | − | 4.17684i | 42.6500i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.8 | −3.58998 | 0.133977 | + | 15.5879i | −19.1121 | 11.8803i | −0.480974 | − | 55.9601i | − | 150.804i | 183.491 | −242.964 | + | 4.17684i | − | 42.6500i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.9 | 3.58998 | 0.133977 | − | 15.5879i | −19.1121 | − | 11.8803i | 0.480974 | − | 55.9601i | − | 150.804i | −183.491 | −242.964 | − | 4.17684i | − | 42.6500i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.10 | 3.58998 | 0.133977 | + | 15.5879i | −19.1121 | 11.8803i | 0.480974 | + | 55.9601i | 150.804i | −183.491 | −242.964 | + | 4.17684i | 42.6500i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.11 | 4.46270 | −14.2692 | − | 6.27606i | −12.0843 | 59.8956i | −63.6794 | − | 28.0082i | 169.425i | −196.735 | 164.222 | + | 179.109i | 267.296i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.12 | 4.46270 | −14.2692 | + | 6.27606i | −12.0843 | − | 59.8956i | −63.6794 | + | 28.0082i | − | 169.425i | −196.735 | 164.222 | − | 179.109i | − | 267.296i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.13 | 8.47928 | 11.5964 | − | 10.4175i | 39.8981 | 35.7023i | 98.3287 | − | 88.3330i | 11.5666i | 66.9703 | 25.9508 | − | 241.610i | 302.729i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.14 | 8.47928 | 11.5964 | + | 10.4175i | 39.8981 | − | 35.7023i | 98.3287 | + | 88.3330i | − | 11.5666i | 66.9703 | 25.9508 | + | 241.610i | − | 302.729i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.15 | 10.1143 | −10.9611 | − | 11.0840i | 70.2982 | − | 88.5196i | −110.863 | − | 112.106i | 126.220i | 387.358 | −2.70883 | + | 242.985i | − | 895.310i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.16 | 10.1143 | −10.9611 | + | 11.0840i | 70.2982 | 88.5196i | −110.863 | + | 112.106i | − | 126.220i | 387.358 | −2.70883 | − | 242.985i | 895.310i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.6.d.b | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 33.6.d.b | ✓ | 16 |
11.b | odd | 2 | 1 | inner | 33.6.d.b | ✓ | 16 |
33.d | even | 2 | 1 | inner | 33.6.d.b | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.6.d.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
33.6.d.b | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
33.6.d.b | ✓ | 16 | 11.b | odd | 2 | 1 | inner |
33.6.d.b | ✓ | 16 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 207T_{2}^{6} + 13326T_{2}^{4} - 285984T_{2}^{2} + 1887840 \)
acting on \(S_{6}^{\mathrm{new}}(33, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{8} - 207 T^{6} + 13326 T^{4} + \cdots + 1887840)^{2} \)
$3$
\( (T^{8} + 27 T^{7} + 420 T^{6} + \cdots + 3486784401)^{2} \)
$5$
\( (T^{8} + 12839 T^{6} + \cdots + 5057252969536)^{2} \)
$7$
\( (T^{8} + 67512 T^{6} + \cdots + 13\!\cdots\!40)^{2} \)
$11$
\( T^{16} - 523232 T^{14} + \cdots + 45\!\cdots\!01 \)
$13$
\( (T^{8} + 2453916 T^{6} + \cdots + 10\!\cdots\!60)^{2} \)
$17$
\( (T^{8} - 2918916 T^{6} + \cdots + 28\!\cdots\!60)^{2} \)
$19$
\( (T^{8} + 6264828 T^{6} + \cdots + 20\!\cdots\!60)^{2} \)
$23$
\( (T^{8} + 18393395 T^{6} + \cdots + 18\!\cdots\!56)^{2} \)
$29$
\( (T^{8} - 40561356 T^{6} + \cdots + 36\!\cdots\!60)^{2} \)
$31$
\( (T^{4} + 2995 T^{3} + \cdots - 28686372143360)^{4} \)
$37$
\( (T^{4} - 2339 T^{3} + \cdots + 17\!\cdots\!84)^{4} \)
$41$
\( (T^{8} - 738524844 T^{6} + \cdots + 22\!\cdots\!40)^{2} \)
$43$
\( (T^{8} + 1049669388 T^{6} + \cdots + 39\!\cdots\!60)^{2} \)
$47$
\( (T^{8} + 628768868 T^{6} + \cdots + 49\!\cdots\!96)^{2} \)
$53$
\( (T^{8} + 1078834028 T^{6} + \cdots + 24\!\cdots\!24)^{2} \)
$59$
\( (T^{8} + 2794298423 T^{6} + \cdots + 21\!\cdots\!64)^{2} \)
$61$
\( (T^{8} + 2308041276 T^{6} + \cdots + 67\!\cdots\!00)^{2} \)
$67$
\( (T^{4} + 91033 T^{3} + \cdots - 90\!\cdots\!68)^{4} \)
$71$
\( (T^{8} + 8140749275 T^{6} + \cdots + 38\!\cdots\!00)^{2} \)
$73$
\( (T^{8} + 11461184064 T^{6} + \cdots + 12\!\cdots\!40)^{2} \)
$79$
\( (T^{8} + 12257928120 T^{6} + \cdots + 67\!\cdots\!40)^{2} \)
$83$
\( (T^{8} - 5152546224 T^{6} + \cdots + 11\!\cdots\!40)^{2} \)
$89$
\( (T^{8} + 11404518611 T^{6} + \cdots + 47\!\cdots\!00)^{2} \)
$97$
\( (T^{4} - 29963 T^{3} + \cdots + 73\!\cdots\!92)^{4} \)
show more
show less