Properties

Label 33.6.d
Level $33$
Weight $6$
Character orbit 33.d
Rep. character $\chi_{33}(32,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 33.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(33, [\chi])\).

Total New Old
Modular forms 22 22 0
Cusp forms 18 18 0
Eisenstein series 4 4 0

Trace form

\( 18q - 23q^{3} + 252q^{4} + 253q^{9} + O(q^{10}) \) \( 18q - 23q^{3} + 252q^{4} + 253q^{9} - 1544q^{12} - 1993q^{15} + 3732q^{16} + 7932q^{22} - 13608q^{25} + 3952q^{27} + 3570q^{31} - 6437q^{33} - 34032q^{34} - 1184q^{36} + 6822q^{37} + 45912q^{42} + 67541q^{45} - 46268q^{48} + 32478q^{49} + 40110q^{55} + 31848q^{58} - 210340q^{60} - 59676q^{64} - 164796q^{66} - 218298q^{67} + 130301q^{69} + 231144q^{70} + 130458q^{75} + 296088q^{78} - 143807q^{81} + 4824q^{82} + 586836q^{88} - 209184q^{91} - 280021q^{93} - 206514q^{97} - 285155q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(33, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
33.6.d.a \(2\) \(5.293\) \(\Q(\sqrt{-11}) \) \(\Q(\sqrt{-11}) \) \(0\) \(31\) \(0\) \(0\) \(q+(2^{4}-\beta )q^{3}-2^{5}q^{4}+(29-58\beta )q^{5}+\cdots\)
33.6.d.b \(16\) \(5.293\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(-54\) \(0\) \(0\) \(q+\beta _{3}q^{2}+(-3-\beta _{2})q^{3}+(20+\beta _{9}+\cdots)q^{4}+\cdots\)