[N,k,chi] = [33,6,Mod(1,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{313})\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(1\)
\(11\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - T_{2} - 78 \)
T2^2 - T2 - 78
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(33))\).
$p$
$F_p(T)$
$2$
\( T^{2} - T - 78 \)
T^2 - T - 78
$3$
\( (T + 9)^{2} \)
(T + 9)^2
$5$
\( T^{2} + 38T - 7464 \)
T^2 + 38*T - 7464
$7$
\( T^{2} + 18T - 232 \)
T^2 + 18*T - 232
$11$
\( (T - 121)^{2} \)
(T - 121)^2
$13$
\( T^{2} + 66T - 878128 \)
T^2 + 66*T - 878128
$17$
\( T^{2} + 920T + 210348 \)
T^2 + 920*T + 210348
$19$
\( T^{2} + 2932 T + 2147904 \)
T^2 + 2932*T + 2147904
$23$
\( T^{2} - 5246 T + 6827232 \)
T^2 - 5246*T + 6827232
$29$
\( T^{2} + 12600 T + 38326572 \)
T^2 + 12600*T + 38326572
$31$
\( T^{2} - 9936 T - 4245184 \)
T^2 - 9936*T - 4245184
$37$
\( T^{2} - 5996 T + 975204 \)
T^2 - 5996*T + 975204
$41$
\( T^{2} - 24244 T + 105471636 \)
T^2 - 24244*T + 105471636
$43$
\( T^{2} - 20360 T - 16684800 \)
T^2 - 20360*T - 16684800
$47$
\( T^{2} + 5806 T - 38936064 \)
T^2 + 5806*T - 38936064
$53$
\( T^{2} - 40770 T + 387938808 \)
T^2 - 40770*T + 387938808
$59$
\( T^{2} - 18212 T - 974471136 \)
T^2 - 18212*T - 974471136
$61$
\( T^{2} + 11398 T - 557566776 \)
T^2 + 11398*T - 557566776
$67$
\( T^{2} - 65368 T + 1022090128 \)
T^2 - 65368*T + 1022090128
$71$
\( T^{2} - 61446 T + 190949616 \)
T^2 - 61446*T + 190949616
$73$
\( T^{2} - 53412 T + 705197636 \)
T^2 - 53412*T + 705197636
$79$
\( T^{2} - 17122 T - 281721704 \)
T^2 - 17122*T - 281721704
$83$
\( T^{2} + 14304 T - 922809744 \)
T^2 + 14304*T - 922809744
$89$
\( T^{2} + 58140 T + 129501828 \)
T^2 + 58140*T + 129501828
$97$
\( T^{2} + 183056 T + 8284064476 \)
T^2 + 183056*T + 8284064476
show more
show less