Properties

Label 33.6.a.c
Level $33$
Weight $6$
Character orbit 33.a
Self dual yes
Analytic conductor $5.293$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [33,6,Mod(1,33)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("33.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.29266605383\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{2} - 9 q^{3} + (5 \beta + 16) q^{4} + (10 \beta + 24) q^{5} + (9 \beta + 18) q^{6} + ( - 10 \beta - 138) q^{7} + (\beta - 188) q^{8} + 81 q^{9} + ( - 54 \beta - 488) q^{10} - 121 q^{11}+ \cdots - 9801 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{2} - 18 q^{3} + 37 q^{4} + 58 q^{5} + 45 q^{6} - 286 q^{7} - 375 q^{8} + 162 q^{9} - 1030 q^{10} - 242 q^{11} - 333 q^{12} - 166 q^{13} + 1600 q^{14} - 522 q^{15} - 335 q^{16} - 800 q^{17} - 405 q^{18}+ \cdots - 19602 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
−9.15207 −9.00000 51.7603 95.5207 82.3686 −209.521 −180.848 81.0000 −874.212
1.2 4.15207 −9.00000 −14.7603 −37.5207 −37.3686 −76.4793 −194.152 81.0000 −155.788
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.6.a.c 2
3.b odd 2 1 99.6.a.f 2
4.b odd 2 1 528.6.a.s 2
5.b even 2 1 825.6.a.e 2
11.b odd 2 1 363.6.a.j 2
33.d even 2 1 1089.6.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.6.a.c 2 1.a even 1 1 trivial
99.6.a.f 2 3.b odd 2 1
363.6.a.j 2 11.b odd 2 1
528.6.a.s 2 4.b odd 2 1
825.6.a.e 2 5.b even 2 1
1089.6.a.j 2 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 5T_{2} - 38 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(33))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 5T - 38 \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 58T - 3584 \) Copy content Toggle raw display
$7$ \( T^{2} + 286T + 16024 \) Copy content Toggle raw display
$11$ \( (T + 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 166T - 57008 \) Copy content Toggle raw display
$17$ \( T^{2} + 800T + 700 \) Copy content Toggle raw display
$19$ \( T^{2} + 1476 T + 538272 \) Copy content Toggle raw display
$23$ \( T^{2} + 3370 T - 3088328 \) Copy content Toggle raw display
$29$ \( T^{2} - 6600 T + 3378828 \) Copy content Toggle raw display
$31$ \( T^{2} + 7528 T + 8931328 \) Copy content Toggle raw display
$37$ \( T^{2} + 29916 T + 222923316 \) Copy content Toggle raw display
$41$ \( T^{2} + 5780 T - 14080172 \) Copy content Toggle raw display
$43$ \( T^{2} + 16656 T - 29676624 \) Copy content Toggle raw display
$47$ \( T^{2} - 7850 T - 266939288 \) Copy content Toggle raw display
$53$ \( T^{2} - 14178 T - 165085872 \) Copy content Toggle raw display
$59$ \( T^{2} - 17300 T - 21579488 \) Copy content Toggle raw display
$61$ \( T^{2} + 2946 T - 238059096 \) Copy content Toggle raw display
$67$ \( T^{2} - 31336 T - 207633776 \) Copy content Toggle raw display
$71$ \( T^{2} + 33810 T - 138914952 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1593591164 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 3977569112 \) Copy content Toggle raw display
$83$ \( T^{2} + 58296 T + 552313872 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 7896843132 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 20063108900 \) Copy content Toggle raw display
show more
show less