Properties

Label 33.6.a
Level $33$
Weight $6$
Character orbit 33.a
Rep. character $\chi_{33}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $5$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(33))\).

Total New Old
Modular forms 22 8 14
Cusp forms 18 8 10
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(4\)\(2\)\(2\)\(3\)\(2\)\(1\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(7\)\(3\)\(4\)\(6\)\(3\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(6\)\(1\)\(5\)\(5\)\(1\)\(4\)\(1\)\(0\)\(1\)
Plus space\(+\)\(10\)\(3\)\(7\)\(8\)\(3\)\(5\)\(2\)\(0\)\(2\)
Minus space\(-\)\(12\)\(5\)\(7\)\(10\)\(5\)\(5\)\(2\)\(0\)\(2\)

Trace form

\( 8 q + 8 q^{2} - 18 q^{3} + 108 q^{4} + 32 q^{5} + 180 q^{6} - 36 q^{7} - 108 q^{8} + 648 q^{9} + 544 q^{10} - 864 q^{12} - 480 q^{13} + 1508 q^{14} - 900 q^{15} + 948 q^{16} - 4612 q^{17} + 648 q^{18} - 916 q^{19}+ \cdots - 228120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(33))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11
33.6.a.a 33.a 1.a $1$ $5.293$ \(\Q\) None 33.6.a.a \(-2\) \(-9\) \(46\) \(148\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-9q^{3}-28q^{4}+46q^{5}+18q^{6}+\cdots\)
33.6.a.b 33.a 1.a $1$ $5.293$ \(\Q\) None 33.6.a.b \(1\) \(9\) \(-92\) \(-26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+9q^{3}-31q^{4}-92q^{5}+9q^{6}+\cdots\)
33.6.a.c 33.a 1.a $2$ $5.293$ \(\Q(\sqrt{177}) \) None 33.6.a.c \(-5\) \(-18\) \(58\) \(-286\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}-9q^{3}+(2^{4}+5\beta )q^{4}+\cdots\)
33.6.a.d 33.a 1.a $2$ $5.293$ \(\Q(\sqrt{313}) \) None 33.6.a.d \(1\) \(-18\) \(-38\) \(-18\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-9q^{3}+(46+\beta )q^{4}+(-24+\cdots)q^{5}+\cdots\)
33.6.a.e 33.a 1.a $2$ $5.293$ \(\Q(\sqrt{33}) \) None 33.6.a.e \(13\) \(18\) \(58\) \(146\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(7-\beta )q^{2}+9q^{3}+(5^{2}-13\beta )q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(33))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(33)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)