Defining parameters
| Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 33.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(33))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 22 | 8 | 14 |
| Cusp forms | 18 | 8 | 10 |
| Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(4\) | \(2\) | \(2\) | \(3\) | \(2\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(7\) | \(3\) | \(4\) | \(6\) | \(3\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(5\) | \(2\) | \(3\) | \(4\) | \(2\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(10\) | \(3\) | \(7\) | \(8\) | \(3\) | \(5\) | \(2\) | \(0\) | \(2\) | ||||
| Minus space | \(-\) | \(12\) | \(5\) | \(7\) | \(10\) | \(5\) | \(5\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(33))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 11 | |||||||
| 33.6.a.a | $1$ | $5.293$ | \(\Q\) | None | \(-2\) | \(-9\) | \(46\) | \(148\) | $+$ | $-$ | \(q-2q^{2}-9q^{3}-28q^{4}+46q^{5}+18q^{6}+\cdots\) | |
| 33.6.a.b | $1$ | $5.293$ | \(\Q\) | None | \(1\) | \(9\) | \(-92\) | \(-26\) | $-$ | $-$ | \(q+q^{2}+9q^{3}-31q^{4}-92q^{5}+9q^{6}+\cdots\) | |
| 33.6.a.c | $2$ | $5.293$ | \(\Q(\sqrt{177}) \) | None | \(-5\) | \(-18\) | \(58\) | \(-286\) | $+$ | $+$ | \(q+(-2-\beta )q^{2}-9q^{3}+(2^{4}+5\beta )q^{4}+\cdots\) | |
| 33.6.a.d | $2$ | $5.293$ | \(\Q(\sqrt{313}) \) | None | \(1\) | \(-18\) | \(-38\) | \(-18\) | $+$ | $-$ | \(q+\beta q^{2}-9q^{3}+(46+\beta )q^{4}+(-24+\cdots)q^{5}+\cdots\) | |
| 33.6.a.e | $2$ | $5.293$ | \(\Q(\sqrt{33}) \) | None | \(13\) | \(18\) | \(58\) | \(146\) | $-$ | $+$ | \(q+(7-\beta )q^{2}+9q^{3}+(5^{2}-13\beta )q^{4}+\cdots\) | |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(33))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(33)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)