Properties

Label 33.6
Level 33
Weight 6
Dimension 138
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 480
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 33 = 3 \cdot 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(480\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(33))\).

Total New Old
Modular forms 220 158 62
Cusp forms 180 138 42
Eisenstein series 40 20 20

Trace form

\( 138 q + 12 q^{2} - 23 q^{3} - 18 q^{4} - 12 q^{5} + 123 q^{6} - 520 q^{7} - 656 q^{8} + 383 q^{9} + 2072 q^{10} + 1454 q^{11} + 238 q^{12} - 2296 q^{13} + 510 q^{14} - 3853 q^{15} - 14018 q^{16} - 5274 q^{17}+ \cdots - 1074091 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
33.6.a \(\chi_{33}(1, \cdot)\) 33.6.a.a 1 1
33.6.a.b 1
33.6.a.c 2
33.6.a.d 2
33.6.a.e 2
33.6.d \(\chi_{33}(32, \cdot)\) 33.6.d.a 2 1
33.6.d.b 16
33.6.e \(\chi_{33}(4, \cdot)\) 33.6.e.a 20 4
33.6.e.b 20
33.6.f \(\chi_{33}(2, \cdot)\) 33.6.f.a 72 4

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(33))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(33)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 1}\)