Properties

Label 33.5.c.a
Level $33$
Weight $5$
Character orbit 33.c
Analytic conductor $3.411$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,5,Mod(10,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.10");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 33.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.41120878177\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 102x^{6} + 2913x^{4} + 23292x^{2} + 41364 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{2} q^{3} + (\beta_{5} - \beta_{4} - \beta_{2} - 10) q^{4} + (\beta_{5} + \beta_{2} - 5) q^{5} + (\beta_{3} + 2 \beta_1) q^{6} + (\beta_{7} - \beta_{6} + \beta_{3} + 6 \beta_1) q^{7} + (\beta_{7} + \beta_{6} - 2 \beta_{3} - 14 \beta_1) q^{8} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + \beta_{2} q^{3} + (\beta_{5} - \beta_{4} - \beta_{2} - 10) q^{4} + (\beta_{5} + \beta_{2} - 5) q^{5} + (\beta_{3} + 2 \beta_1) q^{6} + (\beta_{7} - \beta_{6} + \beta_{3} + 6 \beta_1) q^{7} + (\beta_{7} + \beta_{6} - 2 \beta_{3} - 14 \beta_1) q^{8} + 27 q^{9} + (\beta_{7} + 2 \beta_{3} - 15 \beta_1) q^{10} + ( - \beta_{7} + 2 \beta_{6} + \beta_{5} + 7 \beta_{4} - \beta_{3} + 4 \beta_{2} + 3 \beta_1 + 4) q^{11} + ( - 9 \beta_{4} - 8 \beta_{2} - 45) q^{12} + ( - \beta_{7} - 2 \beta_{6} + 2 \beta_{3} + 9 \beta_1) q^{13} + (\beta_{5} - 16 \beta_{4} - 17 \beta_{2} - 143) q^{14} + ( - 3 \beta_{5} - 6 \beta_{4} - 5 \beta_{2} + 15) q^{15} + ( - 3 \beta_{5} + 33 \beta_{4} + 39 \beta_{2} + 178) q^{16} + ( - 5 \beta_{7} + \beta_{6} - 8 \beta_{3} + 23 \beta_1) q^{17} + 27 \beta_1 q^{18} + ( - 2 \beta_{7} - 5 \beta_{6} - 9 \beta_{3} - 3 \beta_1) q^{19} + ( - 9 \beta_{5} + 10 \beta_{4} - 9 \beta_{2} + 321) q^{20} + ( - 6 \beta_{7} + 3 \beta_{6} + 2 \beta_{3} + 22 \beta_1) q^{21} + (\beta_{7} - 7 \beta_{6} + 5 \beta_{5} + 19 \beta_{4} + 19 \beta_{3} + \beta_{2} + \cdots - 100) q^{22}+ \cdots + ( - 27 \beta_{7} + 54 \beta_{6} + 27 \beta_{5} + 189 \beta_{4} + \cdots + 108) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 76 q^{4} - 36 q^{5} + 216 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 76 q^{4} - 36 q^{5} + 216 q^{9} + 36 q^{11} - 360 q^{12} - 1140 q^{14} + 108 q^{15} + 1412 q^{16} + 2532 q^{20} - 780 q^{22} + 516 q^{23} - 2280 q^{25} - 1524 q^{26} + 2752 q^{31} + 1008 q^{33} - 4920 q^{34} - 2052 q^{36} + 5296 q^{37} + 696 q^{38} - 4356 q^{42} - 6540 q^{44} - 972 q^{45} + 420 q^{47} + 9936 q^{48} - 6832 q^{49} + 3540 q^{53} + 3784 q^{55} + 17964 q^{56} + 21624 q^{58} - 16632 q^{59} - 612 q^{60} - 27508 q^{64} + 360 q^{66} - 3656 q^{67} + 9036 q^{69} + 3312 q^{70} - 13212 q^{71} - 9288 q^{75} + 23268 q^{77} - 13140 q^{78} - 4476 q^{80} + 5832 q^{81} + 17088 q^{82} + 19896 q^{86} - 12516 q^{88} + 15528 q^{89} - 19752 q^{91} - 81180 q^{92} - 21384 q^{93} + 7624 q^{97} + 972 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 102x^{6} + 2913x^{4} + 23292x^{2} + 41364 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{6} - 444\nu^{4} - 9669\nu^{2} - 38034 ) / 3216 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{7} - 444\nu^{5} - 9669\nu^{3} - 44466\nu ) / 3216 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{6} + 320\nu^{4} + 8535\nu^{2} + 31182 ) / 1608 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} + 196\nu^{4} + 10617\nu^{2} + 107946 ) / 3216 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2\nu^{7} - 191\nu^{5} - 4551\nu^{3} - 16500\nu ) / 402 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3\nu^{7} + 320\nu^{5} + 10143\nu^{3} + 95502\nu ) / 1608 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} - \beta_{2} - 26 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} - 2\beta_{3} - 46\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -51\beta_{5} + 81\beta_{4} + 87\beta_{2} + 1170 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -51\beta_{7} - 81\beta_{6} + 198\beta_{3} + 2442\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2595\beta_{5} - 5259\beta_{4} - 6435\beta_{2} - 61224 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 2595\beta_{7} + 5259\beta_{6} - 14358\beta_{3} - 136788\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
7.70102i
5.58567i
3.00247i
1.57474i
1.57474i
3.00247i
5.58567i
7.70102i
7.70102i 5.19615 −43.3057 −12.5296 40.0157i 63.6540i 210.281i 27.0000 96.4909i
10.2 5.58567i −5.19615 −15.1997 −29.7487 29.0240i 12.9420i 4.47031i 27.0000 166.166i
10.3 3.00247i 5.19615 6.98517 8.72578 15.6013i 1.45810i 69.0123i 27.0000 26.1989i
10.4 1.57474i −5.19615 13.5202 15.5526 8.18260i 93.8006i 46.4867i 27.0000 24.4913i
10.5 1.57474i −5.19615 13.5202 15.5526 8.18260i 93.8006i 46.4867i 27.0000 24.4913i
10.6 3.00247i 5.19615 6.98517 8.72578 15.6013i 1.45810i 69.0123i 27.0000 26.1989i
10.7 5.58567i −5.19615 −15.1997 −29.7487 29.0240i 12.9420i 4.47031i 27.0000 166.166i
10.8 7.70102i 5.19615 −43.3057 −12.5296 40.0157i 63.6540i 210.281i 27.0000 96.4909i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 10.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.5.c.a 8
3.b odd 2 1 99.5.c.c 8
4.b odd 2 1 528.5.j.a 8
11.b odd 2 1 inner 33.5.c.a 8
33.d even 2 1 99.5.c.c 8
44.c even 2 1 528.5.j.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.5.c.a 8 1.a even 1 1 trivial
33.5.c.a 8 11.b odd 2 1 inner
99.5.c.c 8 3.b odd 2 1
99.5.c.c 8 33.d even 2 1
528.5.j.a 8 4.b odd 2 1
528.5.j.a 8 44.c even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(33, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 102 T^{6} + 2913 T^{4} + \cdots + 41364 \) Copy content Toggle raw display
$3$ \( (T^{2} - 27)^{4} \) Copy content Toggle raw display
$5$ \( (T^{4} + 18 T^{3} - 518 T^{2} + \cdots + 50584)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + 13020 T^{6} + \cdots + 12695273424 \) Copy content Toggle raw display
$11$ \( T^{8} - 36 T^{7} + \cdots + 45\!\cdots\!61 \) Copy content Toggle raw display
$13$ \( T^{8} + 66480 T^{6} + \cdots + 11\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{8} + 326700 T^{6} + \cdots + 57\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{8} + 467172 T^{6} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$23$ \( (T^{4} - 258 T^{3} - 458558 T^{2} + \cdots + 2066510872)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 3652884 T^{6} + \cdots + 32\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( (T^{4} - 1376 T^{3} + \cdots + 6236194624)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 2648 T^{3} + \cdots + 26585618752)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 18633108 T^{6} + \cdots + 10\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( T^{8} + 8964516 T^{6} + \cdots + 25\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( (T^{4} - 210 T^{3} + \cdots + 12403328125408)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 1770 T^{3} + \cdots - 15377555198312)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 8316 T^{3} + \cdots - 39877809797408)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 65474352 T^{6} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( (T^{4} + 1828 T^{3} + \cdots - 192515994273728)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 6606 T^{3} + \cdots - 855560872809632)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 62146512 T^{6} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{8} + 318678684 T^{6} + \cdots + 28\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{8} + 244092288 T^{6} + \cdots + 76\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{4} - 7764 T^{3} + \cdots - 12\!\cdots\!44)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 3812 T^{3} + \cdots - 466619407059968)^{2} \) Copy content Toggle raw display
show more
show less