[N,k,chi] = [33,4,Mod(4,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.4");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).
\(n\)
\(13\)
\(23\)
\(\chi(n)\)
\(-1 + \beta_{2} - \beta_{3} + \beta_{7}\)
\(1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 6T_{2}^{7} + 34T_{2}^{6} + 72T_{2}^{5} + 49T_{2}^{4} - 96T_{2}^{3} + 51T_{2}^{2} + 3T_{2} + 1 \)
T2^8 + 6*T2^7 + 34*T2^6 + 72*T2^5 + 49*T2^4 - 96*T2^3 + 51*T2^2 + 3*T2 + 1
acting on \(S_{4}^{\mathrm{new}}(33, [\chi])\).
$p$
$F_p(T)$
$2$
\( T^{8} + 6 T^{7} + 34 T^{6} + 72 T^{5} + \cdots + 1 \)
T^8 + 6*T^7 + 34*T^6 + 72*T^5 + 49*T^4 - 96*T^3 + 51*T^2 + 3*T + 1
$3$
\( (T^{4} + 3 T^{3} + 9 T^{2} + 27 T + 81)^{2} \)
(T^4 + 3*T^3 + 9*T^2 + 27*T + 81)^2
$5$
\( T^{8} - 9 T^{7} + 34 T^{6} + \cdots + 21911761 \)
T^8 - 9*T^7 + 34*T^6 + 267*T^5 + 7579*T^4 - 72621*T^3 + 1144596*T^2 - 4058427*T + 21911761
$7$
\( T^{8} - 3 T^{7} + \cdots + 14957045401 \)
T^8 - 3*T^7 + 1331*T^6 - 12904*T^5 + 683649*T^4 - 3424312*T^3 - 25023306*T^2 + 670932314*T + 14957045401
$11$
\( T^{8} + 87 T^{7} + \cdots + 3138428376721 \)
T^8 + 87*T^7 + 4433*T^6 + 229779*T^5 + 9982500*T^4 + 305835849*T^3 + 7853329913*T^2 + 205141449117*T + 3138428376721
$13$
\( T^{8} + \cdots + 153370490192656 \)
T^8 - 171*T^7 + 19655*T^6 - 1954759*T^5 + 170946429*T^4 - 10078978084*T^3 + 396680324760*T^2 - 9681463554136*T + 153370490192656
$17$
\( T^{8} - 36 T^{7} + \cdots + 16499324068096 \)
T^8 - 36*T^7 + 5122*T^6 - 272913*T^5 + 16293205*T^4 - 110751372*T^3 + 8426959872*T^2 + 575072651136*T + 16499324068096
$19$
\( T^{8} - 324 T^{7} + \cdots + 23\!\cdots\!96 \)
T^8 - 324*T^7 + 56420*T^6 - 6167911*T^5 + 554630019*T^4 - 35881824166*T^3 + 2163032622720*T^2 - 93333279376384*T + 2394219665623696
$23$
\( (T^{4} + 42 T^{3} - 20241 T^{2} + \cdots - 46471644)^{2} \)
(T^4 + 42*T^3 - 20241*T^2 - 1946322*T - 46471644)^2
$29$
\( T^{8} - 393 T^{7} + \cdots + 26\!\cdots\!16 \)
T^8 - 393*T^7 + 100540*T^6 - 22640988*T^5 + 4977447769*T^4 - 606552861702*T^3 + 43516374021780*T^2 - 2083540602918552*T + 265546247096745616
$31$
\( T^{8} - 15 T^{7} + \cdots + 2860289355121 \)
T^8 - 15*T^7 + 10622*T^6 - 1096345*T^5 + 48053649*T^4 + 2335529825*T^3 + 38136010548*T^2 - 74118549175*T + 2860289355121
$37$
\( T^{8} + 747 T^{7} + \cdots + 19\!\cdots\!16 \)
T^8 + 747*T^7 + 309395*T^6 + 68628407*T^5 + 12783797709*T^4 + 471623022428*T^3 + 200394806729760*T^2 + 3216626573965568*T + 19944529999810816
$41$
\( T^{8} - 159 T^{7} + \cdots + 11\!\cdots\!36 \)
T^8 - 159*T^7 - 70355*T^6 + 18243729*T^5 + 22401385279*T^4 - 2040789208206*T^3 + 502867587227040*T^2 - 1536204064839744*T + 11703354644017936
$43$
\( (T^{4} + 322 T^{3} - 136785 T^{2} + \cdots + 5520039844)^{2} \)
(T^4 + 322*T^3 - 136785*T^2 - 27810266*T + 5520039844)^2
$47$
\( T^{8} + 351 T^{7} + \cdots + 20\!\cdots\!16 \)
T^8 + 351*T^7 + 194350*T^6 + 15654684*T^5 + 2366950129*T^4 + 110883250944*T^3 + 449257073534880*T^2 + 100983161234099136*T + 20522381372973558016
$53$
\( T^{8} + 531 T^{7} + \cdots + 27\!\cdots\!21 \)
T^8 + 531*T^7 + 274540*T^6 + 65326419*T^5 + 12255128029*T^4 + 1069649375589*T^3 + 23136408769140*T^2 - 5978105869094019*T + 276209150129369521
$59$
\( T^{8} + 1002 T^{7} + \cdots + 36\!\cdots\!61 \)
T^8 + 1002*T^7 + 1099738*T^6 + 487225944*T^5 + 183598737880*T^4 + 33444733039404*T^3 + 2912421203282853*T^2 + 16646089351977492*T + 36924324562734961
$61$
\( T^{8} - 1449 T^{7} + \cdots + 16\!\cdots\!16 \)
T^8 - 1449*T^7 + 1013420*T^6 - 423936436*T^5 + 119169930489*T^4 - 23206980869086*T^3 + 3192546951182160*T^2 - 262104709003241104*T + 16067042851619587216
$67$
\( (T^{4} + 259 T^{3} - 86025 T^{2} + \cdots + 1798706704)^{2} \)
(T^4 + 259*T^3 - 86025*T^2 - 12603488*T + 1798706704)^2
$71$
\( T^{8} - 429 T^{7} + \cdots + 12\!\cdots\!76 \)
T^8 - 429*T^7 + 1143124*T^6 + 48469752*T^5 + 373333077049*T^4 - 84693708271506*T^3 + 155652497465770716*T^2 + 93373799358345367128*T + 127697228983800269794576
$73$
\( T^{8} - 2547 T^{7} + \cdots + 27\!\cdots\!56 \)
T^8 - 2547*T^7 + 2857946*T^6 - 1477484446*T^5 + 424897760229*T^4 - 116469580571398*T^3 + 67857358494699144*T^2 + 2826917187853921376*T + 2768676979571821799056
$79$
\( T^{8} - 2805 T^{7} + \cdots + 11\!\cdots\!81 \)
T^8 - 2805*T^7 + 3440987*T^6 - 1914091390*T^5 + 543558049599*T^4 - 91892965799470*T^3 + 46926274411916958*T^2 - 1549501681669016260*T + 112029512585081059081
$83$
\( T^{8} + 2553 T^{7} + \cdots + 82\!\cdots\!21 \)
T^8 + 2553*T^7 + 4420435*T^6 + 4651633248*T^5 + 3192398810809*T^4 + 1416255886991352*T^3 + 437869711037705190*T^2 + 83600904026113081722*T + 8252376850310335503721
$89$
\( (T^{4} - 894 T^{3} + \cdots - 245710544796)^{2} \)
(T^4 - 894*T^3 - 1495665*T^2 + 1631796678*T - 245710544796)^2
$97$
\( T^{8} - 9 T^{7} + \cdots + 98\!\cdots\!81 \)
T^8 - 9*T^7 + 407252*T^6 + 216015143*T^5 + 89761845705*T^4 - 72757359309703*T^3 + 33589919683706382*T^2 - 7128629356801505401*T + 981587573332749364081
show more
show less