Properties

Label 33.4.e.a
Level $33$
Weight $4$
Character orbit 33.e
Analytic conductor $1.947$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,4,Mod(4,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.4");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 33.e (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94706303019\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \zeta_{10}^{2} - 2 \zeta_{10} + 4) q^{2} - 3 \zeta_{10}^{3} q^{3} + 12 \zeta_{10}^{2} q^{4} + ( - \zeta_{10}^{3} + 12 \zeta_{10}^{2} - 12 \zeta_{10} + 1) q^{5} + ( - 6 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 6 \zeta_{10} + 6) q^{6} + (6 \zeta_{10}^{3} - 25 \zeta_{10}^{2} + 6 \zeta_{10}) q^{7} + (8 \zeta_{10}^{3} + 16 \zeta_{10} - 16) q^{8} - 9 \zeta_{10} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (4 \zeta_{10}^{2} - 2 \zeta_{10} + 4) q^{2} - 3 \zeta_{10}^{3} q^{3} + 12 \zeta_{10}^{2} q^{4} + ( - \zeta_{10}^{3} + 12 \zeta_{10}^{2} - 12 \zeta_{10} + 1) q^{5} + ( - 6 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 6 \zeta_{10} + 6) q^{6} + (6 \zeta_{10}^{3} - 25 \zeta_{10}^{2} + 6 \zeta_{10}) q^{7} + (8 \zeta_{10}^{3} + 16 \zeta_{10} - 16) q^{8} - 9 \zeta_{10} q^{9} + ( - 26 \zeta_{10}^{3} + 26 \zeta_{10}^{2} - 42) q^{10} + (41 \zeta_{10}^{3} - 25 \zeta_{10}^{2} + 35 \zeta_{10} - 15) q^{11} + 36 q^{12} + ( - 22 \zeta_{10}^{2} - 11 \zeta_{10} - 22) q^{13} + ( - 14 \zeta_{10}^{3} - 88 \zeta_{10} + 88) q^{14} + (33 \zeta_{10}^{3} - 36 \zeta_{10}^{2} + 33 \zeta_{10}) q^{15} + ( - 16 \zeta_{10}^{3} + 16 \zeta_{10}^{2} - 16 \zeta_{10} + 16) q^{16} + ( - 78 \zeta_{10}^{3} + 21 \zeta_{10}^{2} - 21 \zeta_{10} + 78) q^{17} + ( - 36 \zeta_{10}^{3} + 18 \zeta_{10}^{2} - 36 \zeta_{10}) q^{18} + (83 \zeta_{10}^{3} + 45 \zeta_{10} - 45) q^{19} + ( - 132 \zeta_{10}^{2} + 144 \zeta_{10} - 132) q^{20} + ( - 18 \zeta_{10}^{3} + 18 \zeta_{10}^{2} - 57) q^{21} + (172 \zeta_{10}^{3} - 48 \zeta_{10}^{2} - 12 \zeta_{10} - 42) q^{22} + ( - 44 \zeta_{10}^{3} + 44 \zeta_{10}^{2} - 15) q^{23} + (48 \zeta_{10}^{2} - 24 \zeta_{10} + 48) q^{24} + (3 \zeta_{10}^{3} + 143 \zeta_{10} - 143) q^{25} + ( - 88 \zeta_{10}^{3} - 66 \zeta_{10}^{2} - 88 \zeta_{10}) q^{26} + (27 \zeta_{10}^{3} - 27 \zeta_{10}^{2} + 27 \zeta_{10} - 27) q^{27} + ( - 228 \zeta_{10}^{3} + 300 \zeta_{10}^{2} - 300 \zeta_{10} + 228) q^{28} + (192 \zeta_{10}^{3} - 30 \zeta_{10}^{2} + 192 \zeta_{10}) q^{29} + (126 \zeta_{10}^{3} - 78 \zeta_{10} + 78) q^{30} + ( - 77 \zeta_{10}^{2} + 33 \zeta_{10} - 77) q^{31} + ( - 192 \zeta_{10}^{3} + 192 \zeta_{10}^{2} + 96) q^{32} + ( - 60 \zeta_{10}^{3} + 105 \zeta_{10}^{2} + 18 \zeta_{10} + 30) q^{33} + ( - 198 \zeta_{10}^{3} + 198 \zeta_{10}^{2} + 384) q^{34} + (281 \zeta_{10}^{2} - 366 \zeta_{10} + 281) q^{35} - 108 \zeta_{10}^{3} q^{36} + ( - 22 \zeta_{10}^{3} - 245 \zeta_{10}^{2} - 22 \zeta_{10}) q^{37} + (346 \zeta_{10}^{3} - 104 \zeta_{10}^{2} + 104 \zeta_{10} - 346) q^{38} + (99 \zeta_{10}^{3} - 33 \zeta_{10}^{2} + 33 \zeta_{10} - 99) q^{39} + (104 \zeta_{10}^{3} - 272 \zeta_{10}^{2} + 104 \zeta_{10}) q^{40} + ( - 27 \zeta_{10}^{3} + 34 \zeta_{10} - 34) q^{41} + ( - 264 \zeta_{10}^{2} + 222 \zeta_{10} - 264) q^{42} + (84 \zeta_{10}^{3} - 84 \zeta_{10}^{2} - 75) q^{43} + (120 \zeta_{10}^{3} + 120 \zeta_{10}^{2} - 300 \zeta_{10} - 192) q^{44} + ( - 99 \zeta_{10}^{3} + 99 \zeta_{10}^{2} - 9) q^{45} + ( - 148 \zeta_{10}^{2} + 294 \zeta_{10} - 148) q^{46} + ( - 200 \zeta_{10}^{3} - 55 \zeta_{10} + 55) q^{47} - 48 \zeta_{10}^{2} q^{48} + (54 \zeta_{10}^{3} - 318 \zeta_{10}^{2} + 318 \zeta_{10} - 54) q^{49} + (578 \zeta_{10}^{3} - 852 \zeta_{10}^{2} + 852 \zeta_{10} - 578) q^{50} + ( - 171 \zeta_{10}^{3} - 63 \zeta_{10}^{2} - 171 \zeta_{10}) q^{51} + ( - 396 \zeta_{10}^{3} - 264 \zeta_{10} + 264) q^{52} + (143 \zeta_{10}^{2} - 241 \zeta_{10} + 143) q^{53} + (108 \zeta_{10}^{3} - 108 \zeta_{10}^{2} - 54) q^{54} + ( - 51 \zeta_{10}^{3} + 202 \zeta_{10}^{2} - 571 \zeta_{10} + 295) q^{55} + ( - 352 \zeta_{10}^{3} + 352 \zeta_{10}^{2} + 56) q^{56} + (135 \zeta_{10}^{2} + 114 \zeta_{10} + 135) q^{57} + (1092 \zeta_{10}^{3} + 264 \zeta_{10} - 264) q^{58} + ( - 451 \zeta_{10}^{3} + 418 \zeta_{10}^{2} - 451 \zeta_{10}) q^{59} + ( - 36 \zeta_{10}^{3} + 432 \zeta_{10}^{2} - 432 \zeta_{10} + 36) q^{60} + ( - 717 \zeta_{10}^{3} + 438 \zeta_{10}^{2} - 438 \zeta_{10} + 717) q^{61} + ( - 22 \zeta_{10}^{3} - 374 \zeta_{10}^{2} - 22 \zeta_{10}) q^{62} + (171 \zeta_{10}^{3} - 54 \zeta_{10} + 54) q^{63} + 832 \zeta_{10} q^{64} + ( - 99 \zeta_{10}^{3} + 99 \zeta_{10}^{2} + 209) q^{65} + (162 \zeta_{10}^{3} - 36 \zeta_{10}^{2} + 552 \zeta_{10} - 180) q^{66} + (561 \zeta_{10}^{3} - 561 \zeta_{10}^{2} - 243) q^{67} + (684 \zeta_{10}^{2} + 252 \zeta_{10} + 684) q^{68} + (45 \zeta_{10}^{3} - 132 \zeta_{10} + 132) q^{69} + ( - 902 \zeta_{10}^{3} + 1856 \zeta_{10}^{2} - 902 \zeta_{10}) q^{70} + (433 \zeta_{10}^{3} - 708 \zeta_{10}^{2} + 708 \zeta_{10} - 433) q^{71} + ( - 72 \zeta_{10}^{3} - 72 \zeta_{10}^{2} + 72 \zeta_{10} + 72) q^{72} + ( - 318 \zeta_{10}^{3} + 346 \zeta_{10}^{2} - 318 \zeta_{10}) q^{73} + ( - 622 \zeta_{10}^{3} - 1024 \zeta_{10} + 1024) q^{74} + (429 \zeta_{10}^{2} - 420 \zeta_{10} + 429) q^{75} + (540 \zeta_{10}^{3} - 540 \zeta_{10}^{2} - 996) q^{76} + ( - 34 \zeta_{10}^{3} - 496 \zeta_{10}^{2} + 745 \zeta_{10} + 94) q^{77} + (264 \zeta_{10}^{3} - 264 \zeta_{10}^{2} - 462) q^{78} + ( - 702 \zeta_{10}^{2} + 637 \zeta_{10} - 702) q^{79} + ( - 16 \zeta_{10}^{3} + 176 \zeta_{10} - 176) q^{80} + 81 \zeta_{10}^{2} q^{81} + (82 \zeta_{10}^{3} - 258 \zeta_{10}^{2} + 258 \zeta_{10} - 82) q^{82} + (35 \zeta_{10}^{3} + 431 \zeta_{10}^{2} - 431 \zeta_{10} - 35) q^{83} + (216 \zeta_{10}^{3} - 900 \zeta_{10}^{2} + 216 \zeta_{10}) q^{84} + (549 \zeta_{10}^{3} + 174 \zeta_{10} - 174) q^{85} + ( - 132 \zeta_{10}^{2} - 354 \zeta_{10} - 132) q^{86} + ( - 576 \zeta_{10}^{3} + 576 \zeta_{10}^{2} + 486) q^{87} + ( - 240 \zeta_{10}^{3} + 24 \zeta_{10}^{2} - 192 \zeta_{10} - 496) q^{88} + ( - 154 \zeta_{10}^{3} + 154 \zeta_{10}^{2} - 1279) q^{89} + ( - 234 \zeta_{10}^{2} + 612 \zeta_{10} - 234) q^{90} + (495 \zeta_{10}^{3} + 352 \zeta_{10} - 352) q^{91} + (528 \zeta_{10}^{3} - 708 \zeta_{10}^{2} + 528 \zeta_{10}) q^{92} + (132 \zeta_{10}^{3} + 99 \zeta_{10}^{2} - 99 \zeta_{10} - 132) q^{93} + ( - 620 \zeta_{10}^{3} - 70 \zeta_{10}^{2} + 70 \zeta_{10} + 620) q^{94} + ( - 373 \zeta_{10}^{3} - 39 \zeta_{10}^{2} - 373 \zeta_{10}) q^{95} + ( - 288 \zeta_{10}^{3} - 576 \zeta_{10} + 576) q^{96} + (891 \zeta_{10}^{2} - 282 \zeta_{10} + 891) q^{97} + (744 \zeta_{10}^{3} - 744 \zeta_{10}^{2} + 948) q^{98} + ( - 144 \zeta_{10}^{3} + 54 \zeta_{10}^{2} - 234 \zeta_{10} + 369) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{2} - 3 q^{3} - 12 q^{4} - 21 q^{5} + 30 q^{6} + 37 q^{7} - 40 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 10 q^{2} - 3 q^{3} - 12 q^{4} - 21 q^{5} + 30 q^{6} + 37 q^{7} - 40 q^{8} - 9 q^{9} - 220 q^{10} + 41 q^{11} + 144 q^{12} - 77 q^{13} + 250 q^{14} + 102 q^{15} + 16 q^{16} + 192 q^{17} - 90 q^{18} - 52 q^{19} - 252 q^{20} - 264 q^{21} + 40 q^{22} - 148 q^{23} + 120 q^{24} - 426 q^{25} - 110 q^{26} - 27 q^{27} + 84 q^{28} + 414 q^{29} + 360 q^{30} - 198 q^{31} - 27 q^{33} + 1140 q^{34} + 477 q^{35} - 108 q^{36} + 201 q^{37} - 830 q^{38} - 231 q^{39} + 480 q^{40} - 129 q^{41} - 570 q^{42} - 132 q^{43} - 1068 q^{44} - 234 q^{45} - 150 q^{46} - 35 q^{47} + 48 q^{48} + 474 q^{49} - 30 q^{50} - 279 q^{51} + 396 q^{52} + 188 q^{53} + 356 q^{55} - 480 q^{56} + 519 q^{57} + 300 q^{58} - 1320 q^{59} - 756 q^{60} + 1275 q^{61} + 330 q^{62} + 333 q^{63} + 832 q^{64} + 638 q^{65} + 30 q^{66} + 150 q^{67} + 2304 q^{68} + 441 q^{69} - 3660 q^{70} + 117 q^{71} + 360 q^{72} - 982 q^{73} + 2450 q^{74} + 867 q^{75} - 2904 q^{76} + 1583 q^{77} - 1320 q^{78} - 1469 q^{79} - 544 q^{80} - 81 q^{81} + 270 q^{82} - 967 q^{83} + 1332 q^{84} + 27 q^{85} - 750 q^{86} + 792 q^{87} - 2440 q^{88} - 5424 q^{89} - 90 q^{90} - 561 q^{91} + 1764 q^{92} - 594 q^{93} + 2000 q^{94} - 707 q^{95} + 1440 q^{96} + 2391 q^{97} + 5280 q^{98} + 1044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(\zeta_{10}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1
0.809017 + 0.587785i
−0.309017 0.951057i
0.809017 0.587785i
−0.309017 + 0.951057i
3.61803 + 2.62866i 0.927051 2.85317i 3.70820 + 11.4127i −4.69098 + 3.40820i 10.8541 7.88597i −4.72542 14.5434i −5.52786 + 17.0130i −7.28115 5.29007i −25.9311
16.1 1.38197 + 4.25325i −2.42705 1.76336i −9.70820 + 7.05342i −5.80902 + 17.8783i 4.14590 12.7598i 23.2254 16.8743i −14.4721 10.5146i 2.78115 + 8.55951i −84.0689
25.1 3.61803 2.62866i 0.927051 + 2.85317i 3.70820 11.4127i −4.69098 3.40820i 10.8541 + 7.88597i −4.72542 + 14.5434i −5.52786 17.0130i −7.28115 + 5.29007i −25.9311
31.1 1.38197 4.25325i −2.42705 + 1.76336i −9.70820 7.05342i −5.80902 17.8783i 4.14590 + 12.7598i 23.2254 + 16.8743i −14.4721 + 10.5146i 2.78115 8.55951i −84.0689
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.4.e.a 4
3.b odd 2 1 99.4.f.a 4
11.c even 5 1 inner 33.4.e.a 4
11.c even 5 1 363.4.a.n 2
11.d odd 10 1 363.4.a.o 2
33.f even 10 1 1089.4.a.q 2
33.h odd 10 1 99.4.f.a 4
33.h odd 10 1 1089.4.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.e.a 4 1.a even 1 1 trivial
33.4.e.a 4 11.c even 5 1 inner
99.4.f.a 4 3.b odd 2 1
99.4.f.a 4 33.h odd 10 1
363.4.a.n 2 11.c even 5 1
363.4.a.o 2 11.d odd 10 1
1089.4.a.p 2 33.h odd 10 1
1089.4.a.q 2 33.f even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 10T_{2}^{3} + 60T_{2}^{2} - 200T_{2} + 400 \) acting on \(S_{4}^{\mathrm{new}}(33, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 10 T^{3} + 60 T^{2} + \cdots + 400 \) Copy content Toggle raw display
$3$ \( T^{4} + 3 T^{3} + 9 T^{2} + 27 T + 81 \) Copy content Toggle raw display
$5$ \( T^{4} + 21 T^{3} + 496 T^{2} + \cdots + 11881 \) Copy content Toggle raw display
$7$ \( T^{4} - 37 T^{3} + 619 T^{2} + \cdots + 192721 \) Copy content Toggle raw display
$11$ \( T^{4} - 41 T^{3} + 1881 T^{2} + \cdots + 1771561 \) Copy content Toggle raw display
$13$ \( T^{4} + 77 T^{3} + 2299 T^{2} + \cdots + 14641 \) Copy content Toggle raw display
$17$ \( T^{4} - 192 T^{3} + 14634 T^{2} + \cdots + 2595321 \) Copy content Toggle raw display
$19$ \( T^{4} + 52 T^{3} + 11254 T^{2} + \cdots + 1274641 \) Copy content Toggle raw display
$23$ \( (T^{2} + 74 T - 1051)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 414 T^{3} + \cdots + 1740892176 \) Copy content Toggle raw display
$31$ \( T^{4} + 198 T^{3} + \cdots + 54479161 \) Copy content Toggle raw display
$37$ \( T^{4} - 201 T^{3} + \cdots + 4216034761 \) Copy content Toggle raw display
$41$ \( T^{4} + 129 T^{3} + 6271 T^{2} + \cdots + 241081 \) Copy content Toggle raw display
$43$ \( (T^{2} + 66 T - 7731)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 35 T^{3} + \cdots + 674700625 \) Copy content Toggle raw display
$53$ \( T^{4} - 188 T^{3} + \cdots + 10042561 \) Copy content Toggle raw display
$59$ \( T^{4} + 1320 T^{3} + \cdots + 47173668025 \) Copy content Toggle raw display
$61$ \( T^{4} - 1275 T^{3} + \cdots + 55792802025 \) Copy content Toggle raw display
$67$ \( (T^{2} - 75 T - 391995)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 117 T^{3} + \cdots + 53332821721 \) Copy content Toggle raw display
$73$ \( T^{4} + 982 T^{3} + \cdots + 8360542096 \) Copy content Toggle raw display
$79$ \( T^{4} + 1469 T^{3} + \cdots + 285379255681 \) Copy content Toggle raw display
$83$ \( T^{4} + 967 T^{3} + \cdots + 53935882081 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2712 T + 1809091)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 2391 T^{3} + \cdots + 932420053161 \) Copy content Toggle raw display
show more
show less