Newspace parameters
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.94706303019\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{7} - 35x^{6} + 10x^{5} + 2614x^{4} + 16258x^{3} + 120841x^{2} + 205270x + 821047 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} - 35x^{6} + 10x^{5} + 2614x^{4} + 16258x^{3} + 120841x^{2} + 205270x + 821047 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 654449 \nu^{7} - 4621500 \nu^{6} - 37910704 \nu^{5} + 258375310 \nu^{4} + 2191936298 \nu^{3} - 3509536790 \nu^{2} - 27353124741 \nu - 251237072504 ) / 43097961858 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 1117339 \nu^{7} + 7661354 \nu^{6} + 34074596 \nu^{5} - 310366016 \nu^{4} - 2938713578 \nu^{3} + 1344980044 \nu^{2} + \cdots + 204737740374 ) / 43097961858 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 1117339 \nu^{7} - 7661354 \nu^{6} - 34074596 \nu^{5} + 310366016 \nu^{4} + 2938713578 \nu^{3} - 1344980044 \nu^{2} + 66274294521 \nu - 204737740374 ) / 43097961858 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2849712 \nu^{7} + 18044843 \nu^{6} - 255666928 \nu^{5} - 533197318 \nu^{4} + 13402791352 \nu^{3} + 104272839604 \nu^{2} + \cdots + 1611381064281 ) / 43097961858 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 9352895 \nu^{7} - 760108 \nu^{6} + 480817032 \nu^{5} + 759114088 \nu^{4} - 33192323398 \nu^{3} - 193283264130 \nu^{2} + \cdots - 1902320865922 ) / 129293885574 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 5889566 \nu^{7} + 8072123 \nu^{6} + 295356518 \nu^{5} - 34001274 \nu^{4} - 20257454786 \nu^{3} - 114008586182 \nu^{2} + \cdots - 403613661909 ) / 43097961858 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 345396 \nu^{7} - 399831 \nu^{6} - 16270822 \nu^{5} + 12503088 \nu^{4} + 886340512 \nu^{3} + 6517009006 \nu^{2} + 37980909510 \nu + 64671640283 ) / 2268313782 \)
|
\(\nu\) | \(=\) |
\( \beta_{3} + \beta_{2} \)
|
\(\nu^{2}\) | \(=\) |
\( -2\beta_{6} + 3\beta_{5} + 3\beta_{3} + 4\beta_{2} - 2\beta _1 + 9 \)
|
\(\nu^{3}\) | \(=\) |
\( -9\beta_{7} - 7\beta_{6} + 9\beta_{5} + 8\beta_{4} + 39\beta_{3} - \beta_{2} - 33\beta _1 + 22 \)
|
\(\nu^{4}\) | \(=\) |
\( -12\beta_{7} - 28\beta_{6} + 225\beta_{5} + 116\beta_{4} + 214\beta_{3} - 264\beta_{2} - 381\beta _1 - 897 \)
|
\(\nu^{5}\) | \(=\) |
\( -285\beta_{7} - 42\beta_{6} + 732\beta_{5} + 653\beta_{4} - 660\beta_{3} - 5079\beta_{2} - 4421\beta _1 - 10692 \)
|
\(\nu^{6}\) | \(=\) |
\( - 288 \beta_{7} + 5656 \beta_{6} + 1206 \beta_{5} + 6910 \beta_{4} - 18636 \beta_{3} - 48980 \beta_{2} - 22362 \beta _1 - 165641 \)
|
\(\nu^{7}\) | \(=\) |
\( 16338 \beta_{7} + 61282 \beta_{6} - 51966 \beta_{5} + 14032 \beta_{4} - 327059 \beta_{3} - 469273 \beta_{2} - 97938 \beta _1 - 1076460 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).
\(n\) | \(13\) | \(23\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 |
|
−4.48911 | −2.57603 | − | 4.51265i | 12.1521 | 12.2625i | 11.5641 | + | 20.2578i | 14.5320i | −18.6391 | −13.7281 | + | 23.2495i | − | 55.0476i | |||||||||||||||||||||||||||||||||||
32.2 | −4.48911 | −2.57603 | + | 4.51265i | 12.1521 | − | 12.2625i | 11.5641 | − | 20.2578i | − | 14.5320i | −18.6391 | −13.7281 | − | 23.2495i | 55.0476i | |||||||||||||||||||||||||||||||||||
32.3 | −2.61686 | 4.07603 | − | 3.22272i | −1.15207 | − | 5.53456i | −10.6664 | + | 8.43340i | − | 31.3500i | 23.9496 | 6.22810 | − | 26.2719i | 14.4832i | |||||||||||||||||||||||||||||||||||
32.4 | −2.61686 | 4.07603 | + | 3.22272i | −1.15207 | 5.53456i | −10.6664 | − | 8.43340i | 31.3500i | 23.9496 | 6.22810 | + | 26.2719i | − | 14.4832i | ||||||||||||||||||||||||||||||||||||
32.5 | 2.61686 | 4.07603 | − | 3.22272i | −1.15207 | − | 5.53456i | 10.6664 | − | 8.43340i | 31.3500i | −23.9496 | 6.22810 | − | 26.2719i | − | 14.4832i | |||||||||||||||||||||||||||||||||||
32.6 | 2.61686 | 4.07603 | + | 3.22272i | −1.15207 | 5.53456i | 10.6664 | + | 8.43340i | − | 31.3500i | −23.9496 | 6.22810 | + | 26.2719i | 14.4832i | ||||||||||||||||||||||||||||||||||||
32.7 | 4.48911 | −2.57603 | − | 4.51265i | 12.1521 | 12.2625i | −11.5641 | − | 20.2578i | − | 14.5320i | 18.6391 | −13.7281 | + | 23.2495i | 55.0476i | ||||||||||||||||||||||||||||||||||||
32.8 | 4.48911 | −2.57603 | + | 4.51265i | 12.1521 | − | 12.2625i | −11.5641 | + | 20.2578i | 14.5320i | 18.6391 | −13.7281 | − | 23.2495i | − | 55.0476i | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.4.d.b | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 33.4.d.b | ✓ | 8 |
4.b | odd | 2 | 1 | 528.4.b.e | 8 | ||
11.b | odd | 2 | 1 | inner | 33.4.d.b | ✓ | 8 |
12.b | even | 2 | 1 | 528.4.b.e | 8 | ||
33.d | even | 2 | 1 | inner | 33.4.d.b | ✓ | 8 |
44.c | even | 2 | 1 | 528.4.b.e | 8 | ||
132.d | odd | 2 | 1 | 528.4.b.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.4.d.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
33.4.d.b | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
33.4.d.b | ✓ | 8 | 11.b | odd | 2 | 1 | inner |
33.4.d.b | ✓ | 8 | 33.d | even | 2 | 1 | inner |
528.4.b.e | 8 | 4.b | odd | 2 | 1 | ||
528.4.b.e | 8 | 12.b | even | 2 | 1 | ||
528.4.b.e | 8 | 44.c | even | 2 | 1 | ||
528.4.b.e | 8 | 132.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 27T_{2}^{2} + 138 \)
acting on \(S_{4}^{\mathrm{new}}(33, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - 27 T^{2} + 138)^{2} \)
$3$
\( (T^{4} - 3 T^{3} + 12 T^{2} - 81 T + 729)^{2} \)
$5$
\( (T^{4} + 181 T^{2} + 4606)^{2} \)
$7$
\( (T^{4} + 1194 T^{2} + 207552)^{2} \)
$11$
\( T^{8} + 872 T^{6} + \cdots + 3138428376721 \)
$13$
\( (T^{4} + 1194 T^{2} + 207552)^{2} \)
$17$
\( (T^{4} - 15840 T^{2} + 62318592)^{2} \)
$19$
\( (T^{4} + 30816 T^{2} + \cdots + 119549952)^{2} \)
$23$
\( (T^{4} + 1549 T^{2} + 557326)^{2} \)
$29$
\( (T^{4} - 12804 T^{2} + 27697152)^{2} \)
$31$
\( (T^{2} - 205 T + 10108)^{4} \)
$37$
\( (T^{2} + 221 T - 15446)^{4} \)
$41$
\( (T^{4} - 127620 T^{2} + \cdots + 2981338752)^{2} \)
$43$
\( (T^{4} + 129960 T^{2} + \cdots + 650883072)^{2} \)
$47$
\( (T^{4} + 156838 T^{2} + \cdots + 971000824)^{2} \)
$53$
\( (T^{4} + 384154 T^{2} + \cdots + 2414354656)^{2} \)
$59$
\( (T^{4} + 111763 T^{2} + \cdots + 2268007936)^{2} \)
$61$
\( (T^{4} + 31530 T^{2} + \cdots + 212533248)^{2} \)
$67$
\( (T^{2} - 43 T - 31796)^{4} \)
$71$
\( (T^{4} + 608437 T^{2} + \cdots + 77162701294)^{2} \)
$73$
\( (T^{4} + 1400544 T^{2} + \cdots + 252967698432)^{2} \)
$79$
\( (T^{4} + 987594 T^{2} + \cdots + 14685549312)^{2} \)
$83$
\( (T^{4} - 131472 T^{2} + \cdots + 2499667968)^{2} \)
$89$
\( (T^{4} + 2018707 T^{2} + \cdots + 838875084256)^{2} \)
$97$
\( (T^{2} + 959 T - 257936)^{4} \)
show more
show less