Properties

Label 33.4.a.d
Level $33$
Weight $4$
Character orbit 33.a
Self dual yes
Analytic conductor $1.947$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,4,Mod(1,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.94706303019\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 3 q^{3} + \beta q^{4} + ( - 4 \beta + 10) q^{5} + 3 \beta q^{6} + ( - 2 \beta + 2) q^{7} + ( - 7 \beta + 8) q^{8} + 9 q^{9} + (6 \beta - 32) q^{10} + 11 q^{11} + 3 \beta q^{12} + (8 \beta - 42) q^{13}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 6 q^{3} + q^{4} + 16 q^{5} + 3 q^{6} + 2 q^{7} + 9 q^{8} + 18 q^{9} - 58 q^{10} + 22 q^{11} + 3 q^{12} - 76 q^{13} - 32 q^{14} + 48 q^{15} - 119 q^{16} - 26 q^{17} + 9 q^{18} - 54 q^{19}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.37228
3.37228
−2.37228 3.00000 −2.37228 19.4891 −7.11684 6.74456 24.6060 9.00000 −46.2337
1.2 3.37228 3.00000 3.37228 −3.48913 10.1168 −4.74456 −15.6060 9.00000 −11.7663
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.4.a.d 2
3.b odd 2 1 99.4.a.e 2
4.b odd 2 1 528.4.a.o 2
5.b even 2 1 825.4.a.k 2
5.c odd 4 2 825.4.c.i 4
7.b odd 2 1 1617.4.a.j 2
8.b even 2 1 2112.4.a.ba 2
8.d odd 2 1 2112.4.a.bh 2
11.b odd 2 1 363.4.a.j 2
12.b even 2 1 1584.4.a.x 2
15.d odd 2 1 2475.4.a.o 2
33.d even 2 1 1089.4.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.d 2 1.a even 1 1 trivial
99.4.a.e 2 3.b odd 2 1
363.4.a.j 2 11.b odd 2 1
528.4.a.o 2 4.b odd 2 1
825.4.a.k 2 5.b even 2 1
825.4.c.i 4 5.c odd 4 2
1089.4.a.t 2 33.d even 2 1
1584.4.a.x 2 12.b even 2 1
1617.4.a.j 2 7.b odd 2 1
2112.4.a.ba 2 8.b even 2 1
2112.4.a.bh 2 8.d odd 2 1
2475.4.a.o 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - T_{2} - 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(33))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 8 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 16T - 68 \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 32 \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 76T + 916 \) Copy content Toggle raw display
$17$ \( T^{2} + 26T - 7256 \) Copy content Toggle raw display
$19$ \( T^{2} + 54T - 1944 \) Copy content Toggle raw display
$23$ \( (T - 112)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 222T - 5136 \) Copy content Toggle raw display
$31$ \( T^{2} + 40T - 88832 \) Copy content Toggle raw display
$37$ \( T^{2} + 48T - 15396 \) Copy content Toggle raw display
$41$ \( T^{2} + 494T + 60976 \) Copy content Toggle raw display
$43$ \( T^{2} + 66T - 59928 \) Copy content Toggle raw display
$47$ \( T^{2} + 64T - 17984 \) Copy content Toggle raw display
$53$ \( T^{2} + 84T - 133404 \) Copy content Toggle raw display
$59$ \( (T - 196)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 1104 T + 282396 \) Copy content Toggle raw display
$67$ \( T^{2} - 928T + 24688 \) Copy content Toggle raw display
$71$ \( T^{2} - 456T - 227328 \) Copy content Toggle raw display
$73$ \( T^{2} + 592T - 436292 \) Copy content Toggle raw display
$79$ \( T^{2} + 230T - 31952 \) Copy content Toggle raw display
$83$ \( T^{2} - 348T - 835776 \) Copy content Toggle raw display
$89$ \( T^{2} - 972T + 235668 \) Copy content Toggle raw display
$97$ \( T^{2} + 1184 T - 1104836 \) Copy content Toggle raw display
show more
show less