Newspace parameters
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.h (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.899184872389\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{10})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
Defining polynomial: |
\( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 127407047787804 \nu^{14} - 322126035973969 \nu^{12} + \cdots + 37\!\cdots\!56 ) / 21\!\cdots\!19 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 234959048766210 \nu^{14} + \cdots - 77\!\cdots\!99 ) / 21\!\cdots\!19 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 127407047787804 \nu^{15} + 322126035973969 \nu^{13} + \cdots - 37\!\cdots\!56 \nu ) / 21\!\cdots\!19 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 234959048766210 \nu^{15} + \cdots - 77\!\cdots\!99 \nu ) / 21\!\cdots\!19 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 44\!\cdots\!44 \nu^{14} + \cdots + 20\!\cdots\!70 ) / 21\!\cdots\!19 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 29\!\cdots\!01 \nu^{15} + \cdots + 38\!\cdots\!99 ) / 47\!\cdots\!18 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 29\!\cdots\!01 \nu^{15} + \cdots - 38\!\cdots\!99 ) / 47\!\cdots\!18 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 55\!\cdots\!28 \nu^{15} + \cdots - 91\!\cdots\!65 ) / 47\!\cdots\!18 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 55\!\cdots\!28 \nu^{15} + \cdots - 91\!\cdots\!65 ) / 47\!\cdots\!18 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 30\!\cdots\!44 \nu^{15} + \cdots - 55\!\cdots\!46 \nu ) / 23\!\cdots\!09 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 72\!\cdots\!54 \nu^{15} + \cdots + 25\!\cdots\!82 ) / 47\!\cdots\!18 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 72\!\cdots\!54 \nu^{15} + \cdots - 25\!\cdots\!82 ) / 47\!\cdots\!18 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 99\!\cdots\!41 \nu^{15} + \cdots - 84\!\cdots\!42 ) / 47\!\cdots\!18 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 94\!\cdots\!95 \nu^{15} + \cdots - 74\!\cdots\!23 ) / 47\!\cdots\!18 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{13} + \beta_{12} - \beta_{10} - \beta_{9} + \beta_{8} - \beta_{7} - \beta_{3} - 8\beta_{2} - 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{10} - \beta_{9} + 2\beta_{8} + 2\beta_{7} - \beta_{5} + 10\beta_{4} - \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{15} - \beta_{14} - 15 \beta_{13} + 15 \beta_{12} + \beta_{9} + \beta_{8} + \beta_{7} - 23 \beta_{6} + \beta_{5} + 85 \beta_{3} + 23 \beta_{2} + \beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( - 8 \beta_{15} - 8 \beta_{14} - 41 \beta_{13} - 41 \beta_{12} - 85 \beta_{11} + 11 \beta_{10} - 3 \beta_{9} - 44 \beta_{8} - 44 \beta_{7} + 99 \beta_{5} + 3 \beta_{4} - 96 \beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( - 190 \beta_{15} + 190 \beta_{14} + 220 \beta_{13} - 220 \beta_{12} + 220 \beta_{10} + 30 \beta_{9} - 380 \beta_{8} + 633 \beta_{6} - 190 \beta_{5} + 378 \beta_{2} - 190 \beta _1 + 378 \)
|
\(\nu^{7}\) | \(=\) |
\( 603 \beta_{15} + 603 \beta_{14} + 1143 \beta_{13} + 1143 \beta_{12} + 1073 \beta_{11} + 540 \beta_{10} - 1143 \beta_{9} - 540 \beta_{8} - 540 \beta_{7} - 1683 \beta_{5} - 118 \beta_{4} + 721 \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( - 2341 \beta_{10} - 2341 \beta_{9} + 588 \beta_{8} - 588 \beta_{7} + 6969 \beta_{6} - 12506 \beta_{3} - 12506 \beta_{2} - 6969 \)
|
\(\nu^{9}\) | \(=\) |
\( 6381 \beta_{15} + 6381 \beta_{14} + 12816 \beta_{13} + 12816 \beta_{12} + 12827 \beta_{11} - 6381 \beta_{9} + 6446 \beta_{8} + 6446 \beta_{7} - 22393 \beta_{5} + 16012 \beta_{4} + 6446 \beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( 28893 \beta_{15} - 28893 \beta_{14} - 38546 \beta_{13} + 38546 \beta_{12} - 28893 \beta_{10} + 38546 \beta_{8} + 19240 \beta_{7} - 77049 \beta_{6} + 28893 \beta_{5} + 77049 \beta_{3} + 28893 \beta _1 - 80060 \)
|
\(\nu^{11}\) | \(=\) |
\( - 48156 \beta_{15} - 48156 \beta_{14} - 134901 \beta_{13} - 134901 \beta_{12} - 211927 \beta_{11} - 77026 \beta_{10} + 125182 \beta_{9} + 260083 \beta_{5} - 205308 \beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( - 144620 \beta_{15} + 144620 \beta_{14} + 359360 \beta_{13} - 359360 \beta_{12} + 503980 \beta_{10} + 359360 \beta_{9} - 503980 \beta_{8} + 214740 \beta_{7} - 144620 \beta_{5} + \cdots + 1043432 \)
|
\(\nu^{13}\) | \(=\) |
\( 219120 \beta_{10} - 219120 \beta_{9} - 1152580 \beta_{8} - 1152580 \beta_{7} + 464952 \beta_{5} - 2418485 \beta_{4} + 464952 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( - 2055772 \beta_{15} + 2055772 \beta_{14} + 4504525 \beta_{13} - 4504525 \beta_{12} - 2055772 \beta_{9} - 2055772 \beta_{8} - 2055772 \beta_{7} + 13903349 \beta_{6} + \cdots - 2055772 \beta_1 \)
|
\(\nu^{15}\) | \(=\) |
\( 9398824 \beta_{15} + 9398824 \beta_{14} + 24575190 \beta_{13} + 24575190 \beta_{12} + 36032993 \beta_{11} + 3718563 \beta_{10} - 13117387 \beta_{9} + 11457803 \beta_{8} + \cdots + 32314430 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).
\(n\) | \(13\) | \(23\) |
\(\chi(n)\) | \(\beta_{2}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
−2.91048 | + | 0.945671i | 1.65950 | − | 2.49921i | 4.34051 | − | 3.15356i | 6.31437 | + | 2.05166i | −2.46650 | + | 8.84324i | 2.47800 | − | 1.80037i | −2.45561 | + | 3.37986i | −3.49213 | − | 8.29488i | −20.3180 | ||||||||||||||||||||||||||||||||||||||||||||||||||
5.2 | −1.90610 | + | 0.619331i | −2.89787 | − | 0.776113i | 0.0135968 | − | 0.00987866i | −5.21596 | − | 1.69477i | 6.00431 | − | 0.315387i | −4.52308 | + | 3.28621i | 4.69235 | − | 6.45847i | 7.79530 | + | 4.49815i | 10.9918 | |||||||||||||||||||||||||||||||||||||||||||||||||||
5.3 | 1.90610 | − | 0.619331i | −1.63362 | − | 2.51621i | 0.0135968 | − | 0.00987866i | 5.21596 | + | 1.69477i | −4.67221 | − | 3.78440i | −4.52308 | + | 3.28621i | −4.69235 | + | 6.45847i | −3.66258 | + | 8.22104i | 10.9918 | |||||||||||||||||||||||||||||||||||||||||||||||||||
5.4 | 2.91048 | − | 0.945671i | −1.86408 | + | 2.35058i | 4.34051 | − | 3.15356i | −6.31437 | − | 2.05166i | −3.20248 | + | 8.60410i | 2.47800 | − | 1.80037i | 2.45561 | − | 3.37986i | −2.05042 | − | 8.76332i | −20.3180 | |||||||||||||||||||||||||||||||||||||||||||||||||||
14.1 | −2.10855 | − | 2.90217i | 0.307087 | − | 2.98424i | −2.74053 | + | 8.43448i | −1.22635 | + | 1.68793i | −9.30827 | + | 5.40120i | 2.73883 | − | 8.42924i | 16.6100 | − | 5.39692i | −8.81140 | − | 1.83284i | 7.48447 | |||||||||||||||||||||||||||||||||||||||||||||||||||
14.2 | −0.974642 | − | 1.34148i | 2.52902 | + | 1.61371i | 0.386428 | − | 1.18930i | 0.410570 | − | 0.565101i | −0.300138 | − | 4.96542i | 0.806259 | − | 2.48141i | −8.28007 | + | 2.69036i | 3.79191 | + | 8.16220i | −1.15823 | |||||||||||||||||||||||||||||||||||||||||||||||||||
14.3 | 0.974642 | + | 1.34148i | −1.09751 | + | 2.79204i | 0.386428 | − | 1.18930i | −0.410570 | + | 0.565101i | −4.81514 | + | 1.24895i | 0.806259 | − | 2.48141i | 8.28007 | − | 2.69036i | −6.59095 | − | 6.12857i | −1.15823 | |||||||||||||||||||||||||||||||||||||||||||||||||||
14.4 | 2.10855 | + | 2.90217i | −2.00253 | − | 2.23380i | −2.74053 | + | 8.43448i | 1.22635 | − | 1.68793i | 2.26043 | − | 10.5218i | 2.73883 | − | 8.42924i | −16.6100 | + | 5.39692i | −0.979734 | + | 8.94651i | 7.48447 | |||||||||||||||||||||||||||||||||||||||||||||||||||
20.1 | −2.91048 | − | 0.945671i | 1.65950 | + | 2.49921i | 4.34051 | + | 3.15356i | 6.31437 | − | 2.05166i | −2.46650 | − | 8.84324i | 2.47800 | + | 1.80037i | −2.45561 | − | 3.37986i | −3.49213 | + | 8.29488i | −20.3180 | |||||||||||||||||||||||||||||||||||||||||||||||||||
20.2 | −1.90610 | − | 0.619331i | −2.89787 | + | 0.776113i | 0.0135968 | + | 0.00987866i | −5.21596 | + | 1.69477i | 6.00431 | + | 0.315387i | −4.52308 | − | 3.28621i | 4.69235 | + | 6.45847i | 7.79530 | − | 4.49815i | 10.9918 | |||||||||||||||||||||||||||||||||||||||||||||||||||
20.3 | 1.90610 | + | 0.619331i | −1.63362 | + | 2.51621i | 0.0135968 | + | 0.00987866i | 5.21596 | − | 1.69477i | −4.67221 | + | 3.78440i | −4.52308 | − | 3.28621i | −4.69235 | − | 6.45847i | −3.66258 | − | 8.22104i | 10.9918 | |||||||||||||||||||||||||||||||||||||||||||||||||||
20.4 | 2.91048 | + | 0.945671i | −1.86408 | − | 2.35058i | 4.34051 | + | 3.15356i | −6.31437 | + | 2.05166i | −3.20248 | − | 8.60410i | 2.47800 | + | 1.80037i | 2.45561 | + | 3.37986i | −2.05042 | + | 8.76332i | −20.3180 | |||||||||||||||||||||||||||||||||||||||||||||||||||
26.1 | −2.10855 | + | 2.90217i | 0.307087 | + | 2.98424i | −2.74053 | − | 8.43448i | −1.22635 | − | 1.68793i | −9.30827 | − | 5.40120i | 2.73883 | + | 8.42924i | 16.6100 | + | 5.39692i | −8.81140 | + | 1.83284i | 7.48447 | |||||||||||||||||||||||||||||||||||||||||||||||||||
26.2 | −0.974642 | + | 1.34148i | 2.52902 | − | 1.61371i | 0.386428 | + | 1.18930i | 0.410570 | + | 0.565101i | −0.300138 | + | 4.96542i | 0.806259 | + | 2.48141i | −8.28007 | − | 2.69036i | 3.79191 | − | 8.16220i | −1.15823 | |||||||||||||||||||||||||||||||||||||||||||||||||||
26.3 | 0.974642 | − | 1.34148i | −1.09751 | − | 2.79204i | 0.386428 | + | 1.18930i | −0.410570 | − | 0.565101i | −4.81514 | − | 1.24895i | 0.806259 | + | 2.48141i | 8.28007 | + | 2.69036i | −6.59095 | + | 6.12857i | −1.15823 | |||||||||||||||||||||||||||||||||||||||||||||||||||
26.4 | 2.10855 | − | 2.90217i | −2.00253 | + | 2.23380i | −2.74053 | − | 8.43448i | 1.22635 | + | 1.68793i | 2.26043 | + | 10.5218i | 2.73883 | + | 8.42924i | −16.6100 | − | 5.39692i | −0.979734 | − | 8.94651i | 7.48447 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.3.h.b | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 33.3.h.b | ✓ | 16 |
11.b | odd | 2 | 1 | 363.3.h.j | 16 | ||
11.c | even | 5 | 1 | inner | 33.3.h.b | ✓ | 16 |
11.c | even | 5 | 1 | 363.3.b.m | 8 | ||
11.c | even | 5 | 2 | 363.3.h.o | 16 | ||
11.d | odd | 10 | 1 | 363.3.b.l | 8 | ||
11.d | odd | 10 | 1 | 363.3.h.j | 16 | ||
11.d | odd | 10 | 2 | 363.3.h.n | 16 | ||
33.d | even | 2 | 1 | 363.3.h.j | 16 | ||
33.f | even | 10 | 1 | 363.3.b.l | 8 | ||
33.f | even | 10 | 1 | 363.3.h.j | 16 | ||
33.f | even | 10 | 2 | 363.3.h.n | 16 | ||
33.h | odd | 10 | 1 | inner | 33.3.h.b | ✓ | 16 |
33.h | odd | 10 | 1 | 363.3.b.m | 8 | ||
33.h | odd | 10 | 2 | 363.3.h.o | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.3.h.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
33.3.h.b | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
33.3.h.b | ✓ | 16 | 11.c | even | 5 | 1 | inner |
33.3.h.b | ✓ | 16 | 33.h | odd | 10 | 1 | inner |
363.3.b.l | 8 | 11.d | odd | 10 | 1 | ||
363.3.b.l | 8 | 33.f | even | 10 | 1 | ||
363.3.b.m | 8 | 11.c | even | 5 | 1 | ||
363.3.b.m | 8 | 33.h | odd | 10 | 1 | ||
363.3.h.j | 16 | 11.b | odd | 2 | 1 | ||
363.3.h.j | 16 | 11.d | odd | 10 | 1 | ||
363.3.h.j | 16 | 33.d | even | 2 | 1 | ||
363.3.h.j | 16 | 33.f | even | 10 | 1 | ||
363.3.h.n | 16 | 11.d | odd | 10 | 2 | ||
363.3.h.n | 16 | 33.f | even | 10 | 2 | ||
363.3.h.o | 16 | 11.c | even | 5 | 2 | ||
363.3.h.o | 16 | 33.h | odd | 10 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} - 12 T_{2}^{14} + 180 T_{2}^{12} - 2562 T_{2}^{10} + 25179 T_{2}^{8} - 96398 T_{2}^{6} + 239275 T_{2}^{4} - 536393 T_{2}^{2} + 1771561 \)
acting on \(S_{3}^{\mathrm{new}}(33, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} - 12 T^{14} + 180 T^{12} + \cdots + 1771561 \)
$3$
\( T^{16} + 10 T^{15} + 64 T^{14} + \cdots + 43046721 \)
$5$
\( T^{16} - 117 T^{14} + 5980 T^{12} + \cdots + 7929856 \)
$7$
\( (T^{8} - 3 T^{7} + 61 T^{6} + 181 T^{5} + \cdots + 156816)^{2} \)
$11$
\( T^{16} - 72 T^{14} + \cdots + 45\!\cdots\!61 \)
$13$
\( (T^{8} + 21 T^{7} + 419 T^{6} + \cdots + 19749136)^{2} \)
$17$
\( T^{16} - 262 T^{14} + \cdots + 69002444446441 \)
$19$
\( (T^{8} + 67 T^{7} + 2300 T^{6} + \cdots + 4224870001)^{2} \)
$23$
\( (T^{8} + 1848 T^{6} + \cdots + 25255373616)^{2} \)
$29$
\( T^{16} - 252 T^{14} + \cdots + 116101021696 \)
$31$
\( (T^{8} - 62 T^{7} + 4058 T^{6} + \cdots + 9448617616)^{2} \)
$37$
\( (T^{8} - 45 T^{7} + \cdots + 487254257296)^{2} \)
$41$
\( T^{16} - 7719 T^{14} + \cdots + 15\!\cdots\!81 \)
$43$
\( (T^{4} + 39 T^{3} - 1528 T^{2} + \cdots - 684409)^{4} \)
$47$
\( T^{16} - 9831 T^{14} + \cdots + 21\!\cdots\!96 \)
$53$
\( T^{16} - 1374 T^{14} + \cdots + 30\!\cdots\!36 \)
$59$
\( T^{16} - 15883 T^{14} + \cdots + 26\!\cdots\!01 \)
$61$
\( (T^{8} + 63 T^{7} + \cdots + 1393523586576)^{2} \)
$67$
\( (T^{4} - 92 T^{3} - 3927 T^{2} + \cdots - 11977619)^{4} \)
$71$
\( T^{16} - 1181 T^{14} + \cdots + 27\!\cdots\!96 \)
$73$
\( (T^{8} - 12 T^{7} + \cdots + 5458559358736)^{2} \)
$79$
\( (T^{8} + 157 T^{7} + \cdots + 743504776736656)^{2} \)
$83$
\( T^{16} + 454 T^{14} + \cdots + 21\!\cdots\!81 \)
$89$
\( (T^{8} + 8529 T^{6} + \cdots + 3248250664131)^{2} \)
$97$
\( (T^{8} - 36 T^{7} + \cdots + 9061117408561)^{2} \)
show more
show less