Properties

Label 33.3.h
Level $33$
Weight $3$
Character orbit 33.h
Rep. character $\chi_{33}(5,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $24$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 33.h (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(33, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 24 24 0
Eisenstein series 16 16 0

Trace form

\( 24 q - 6 q^{3} + 2 q^{4} - 23 q^{6} + 2 q^{7} - 26 q^{9} - 56 q^{10} + 58 q^{12} - 10 q^{13} + 32 q^{15} - 98 q^{16} - 3 q^{18} - 22 q^{19} + 76 q^{21} + 20 q^{22} + 111 q^{24} + 92 q^{25} + 36 q^{27} + 342 q^{28}+ \cdots - 490 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(33, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
33.3.h.a 33.h 33.h $8$ $0.899$ \(\Q(\zeta_{20})\) None 33.3.h.a \(0\) \(4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{10}]$ \(q+\zeta_{20}q^{2}+(2+2\zeta_{20}-2\zeta_{20}^{2}-\zeta_{20}^{3}+\cdots)q^{3}+\cdots\)
33.3.h.b 33.h 33.h $16$ $0.899$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 33.3.h.b \(0\) \(-10\) \(0\) \(6\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{6}+\beta _{9})q^{3}+(-1+\cdots)q^{4}+\cdots\)