Defining parameters
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.g (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(33, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 16 | 24 |
Cusp forms | 24 | 16 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(33, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
33.3.g.a | $16$ | $0.899$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-4\) | \(-30\) | \(q+(1+\beta _{2}-\beta _{5}+\beta _{7}+\beta _{8})q^{2}-\beta _{14}q^{3}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(33, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(33, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 2}\)