Properties

Label 33.3.b
Level $33$
Weight $3$
Character orbit 33.b
Rep. character $\chi_{33}(23,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 33.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(33, [\chi])\).

Total New Old
Modular forms 10 6 4
Cusp forms 6 6 0
Eisenstein series 4 0 4

Trace form

\( 6 q + q^{3} - 12 q^{4} - 2 q^{6} - 12 q^{7} + 11 q^{9} + 36 q^{10} - 28 q^{12} + 13 q^{15} - 12 q^{16} + 38 q^{18} - 48 q^{19} - 86 q^{21} + 24 q^{24} + 48 q^{25} + 34 q^{27} + 48 q^{28} + 142 q^{30} - 6 q^{31}+ \cdots - 55 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(33, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
33.3.b.a 33.b 3.b $2$ $0.899$ \(\Q(\sqrt{-11}) \) None 33.3.b.a \(0\) \(6\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}+3q^{3}-7q^{4}+2\beta q^{5}-3\beta q^{6}+\cdots\)
33.3.b.b 33.b 3.b $4$ $0.899$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 33.3.b.b \(0\) \(-5\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-\beta _{2}+\beta _{3})q^{2}+(-1+\beta _{1}+\cdots)q^{3}+\cdots\)