Defining parameters
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.e (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(33, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(33, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
33.2.e.a | $4$ | $0.264$ | \(\Q(\zeta_{10})\) | None | \(-3\) | \(-1\) | \(-1\) | \(-3\) | \(q+(-1-\zeta_{10}^{2})q^{2}-\zeta_{10}^{3}q^{3}+(\zeta_{10}+\cdots)q^{4}+\cdots\) |
33.2.e.b | $4$ | $0.264$ | \(\Q(\zeta_{10})\) | None | \(-1\) | \(1\) | \(-3\) | \(1\) | \(q+(-1+2\zeta_{10}-\zeta_{10}^{2})q^{2}+\zeta_{10}^{3}q^{3}+\cdots\) |