Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [33,14,Mod(32,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 14, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.32");
S:= CuspForms(chi, 14);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(35.3862065541\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −170.839 | −925.430 | − | 859.013i | 20993.9 | 8677.01i | 158099. | + | 146753.i | 329762.i | −2.18706e6 | 118517. | + | 1.58991e6i | − | 1.48237e6i | |||||||||||
32.2 | −170.839 | −925.430 | + | 859.013i | 20993.9 | − | 8677.01i | 158099. | − | 146753.i | − | 329762.i | −2.18706e6 | 118517. | − | 1.58991e6i | 1.48237e6i | ||||||||||
32.3 | −163.385 | 1052.54 | − | 697.490i | 18502.6 | 19154.3i | −171968. | + | 113959.i | 232054.i | −1.68459e6 | 621338. | − | 1.46827e6i | − | 3.12952e6i | |||||||||||
32.4 | −163.385 | 1052.54 | + | 697.490i | 18502.6 | − | 19154.3i | −171968. | − | 113959.i | − | 232054.i | −1.68459e6 | 621338. | + | 1.46827e6i | 3.12952e6i | ||||||||||
32.5 | −146.356 | −138.713 | − | 1255.02i | 13228.2 | 28563.5i | 20301.6 | + | 183681.i | − | 547807.i | −737084. | −1.55584e6 | + | 348176.i | − | 4.18045e6i | ||||||||||
32.6 | −146.356 | −138.713 | + | 1255.02i | 13228.2 | − | 28563.5i | 20301.6 | − | 183681.i | 547807.i | −737084. | −1.55584e6 | − | 348176.i | 4.18045e6i | |||||||||||
32.7 | −139.894 | 486.512 | − | 1165.17i | 11378.3 | − | 64265.5i | −68060.1 | + | 163001.i | − | 236833.i | −445747. | −1.12094e6 | − | 1.13374e6i | 8.99035e6i | ||||||||||
32.8 | −139.894 | 486.512 | + | 1165.17i | 11378.3 | 64265.5i | −68060.1 | − | 163001.i | 236833.i | −445747. | −1.12094e6 | + | 1.13374e6i | − | 8.99035e6i | |||||||||||
32.9 | −131.377 | −1221.71 | − | 318.993i | 9068.04 | − | 56962.3i | 160505. | + | 41908.4i | 78540.7i | −115092. | 1.39081e6 | + | 779430.i | 7.48357e6i | |||||||||||
32.10 | −131.377 | −1221.71 | + | 318.993i | 9068.04 | 56962.3i | 160505. | − | 41908.4i | − | 78540.7i | −115092. | 1.39081e6 | − | 779430.i | − | 7.48357e6i | ||||||||||
32.11 | −103.446 | 1260.72 | + | 70.0278i | 2509.08 | − | 37467.6i | −130417. | − | 7244.09i | 159657.i | 587875. | 1.58452e6 | + | 176571.i | 3.87587e6i | |||||||||||
32.12 | −103.446 | 1260.72 | − | 70.0278i | 2509.08 | 37467.6i | −130417. | + | 7244.09i | − | 159657.i | 587875. | 1.58452e6 | − | 176571.i | − | 3.87587e6i | ||||||||||
32.13 | −100.350 | 304.827 | + | 1225.32i | 1878.02 | − | 6402.02i | −30589.3 | − | 122960.i | − | 527405.i | 633604. | −1.40848e6 | + | 747020.i | 642439.i | ||||||||||
32.14 | −100.350 | 304.827 | − | 1225.32i | 1878.02 | 6402.02i | −30589.3 | + | 122960.i | 527405.i | 633604. | −1.40848e6 | − | 747020.i | − | 642439.i | |||||||||||
32.15 | −99.4888 | −899.927 | − | 885.694i | 1706.02 | 14437.0i | 89532.6 | + | 88116.7i | − | 7425.56i | 645282. | 25413.7 | + | 1.59412e6i | − | 1.43632e6i | ||||||||||
32.16 | −99.4888 | −899.927 | + | 885.694i | 1706.02 | − | 14437.0i | 89532.6 | − | 88116.7i | 7425.56i | 645282. | 25413.7 | − | 1.59412e6i | 1.43632e6i | |||||||||||
32.17 | −53.3141 | 696.893 | + | 1052.93i | −5349.61 | − | 39833.9i | −37154.2 | − | 56136.0i | 214863.i | 721958. | −623002. | + | 1.46756e6i | 2.12371e6i | |||||||||||
32.18 | −53.3141 | 696.893 | − | 1052.93i | −5349.61 | 39833.9i | −37154.2 | + | 56136.0i | − | 214863.i | 721958. | −623002. | − | 1.46756e6i | − | 2.12371e6i | ||||||||||
32.19 | −42.4148 | −1228.16 | − | 293.180i | −6392.98 | − | 21829.9i | 52092.0 | + | 12435.2i | − | 493447.i | 618619. | 1.42241e6 | + | 720142.i | 925910.i | ||||||||||
32.20 | −42.4148 | −1228.16 | + | 293.180i | −6392.98 | 21829.9i | 52092.0 | − | 12435.2i | 493447.i | 618619. | 1.42241e6 | − | 720142.i | − | 925910.i | |||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.14.d.b | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 33.14.d.b | ✓ | 48 |
11.b | odd | 2 | 1 | inner | 33.14.d.b | ✓ | 48 |
33.d | even | 2 | 1 | inner | 33.14.d.b | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.14.d.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
33.14.d.b | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
33.14.d.b | ✓ | 48 | 11.b | odd | 2 | 1 | inner |
33.14.d.b | ✓ | 48 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} - 151551 T_{2}^{22} + 9967864638 T_{2}^{20} - 373579513970400 T_{2}^{18} + \cdots + 28\!\cdots\!00 \)
acting on \(S_{14}^{\mathrm{new}}(33, [\chi])\).