Properties

Label 33.14.d.a
Level $33$
Weight $14$
Character orbit 33.d
Analytic conductor $35.386$
Analytic rank $0$
Dimension $2$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,14,Mod(32,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.32");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 33.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.3862065541\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-11})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 599 \beta - 480) q^{3} - 8192 q^{4} + (41758 \beta - 20879) q^{5} + (933841 \beta - 846003) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 599 \beta - 480) q^{3} - 8192 q^{4} + (41758 \beta - 20879) q^{5} + (933841 \beta - 846003) q^{9} + (3543122 \beta - 1771561) q^{11} + (4907008 \beta + 3932160) q^{12} + ( - 32550361 \beta + 85061046) q^{15} + 67108864 q^{16} + ( - 342081536 \beta + 171040768) q^{20} + (849826798 \beta - 424913399) q^{23} - 3574555926 q^{25} + ( - 500858642 \beta + 2084193717) q^{27} - 2249175235 q^{31} + ( - 2761863599 \beta + 7217339514) q^{33} + ( - 7650025472 \beta + 6930456576) q^{36} - 31003015687 q^{37} + ( - 29025255424 \beta + 14512627712) q^{44} + ( - 15829727035 \beta - 99322300797) q^{45} + (24750002884 \beta - 12375001442) q^{47} + ( - 40198209536 \beta - 32212254720) q^{48} + 96889010407 q^{49} + ( - 140843365928 \beta + 70421682964) q^{53} - 406872643309 q^{55} + ( - 120206310482 \beta + 60103155241) q^{59} + (266652557312 \beta - 696820088832) q^{60} - 549755813888 q^{64} + 882597984827 q^{67} + ( - 662439989041 \beta + 1731097187526) q^{69} + ( - 892891259270 \beta + 446445629635) q^{71} + (2141158999674 \beta + 1715786844480) q^{75} + (2802331942912 \beta - 1401165971456) q^{80} + ( - 708005561765 \beta - 1900455963834) q^{81} + (5562291193930 \beta - 2781145596965) q^{89} + ( - 6961781129216 \beta + 3480890564608) q^{92} + (1347255965765 \beta + 1079604112800) q^{93} + 13535202283217 q^{97} + ( - 1343135545565 \beta - 8427391854123) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 1559 q^{3} - 16384 q^{4} - 758165 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 1559 q^{3} - 16384 q^{4} - 758165 q^{9} + 12771328 q^{12} + 137571731 q^{15} + 134217728 q^{16} - 7149111852 q^{25} + 3667528792 q^{27} - 4498350470 q^{31} + 11672815429 q^{33} + 6210887680 q^{36} - 62006031374 q^{37} - 214474328629 q^{45} - 104622718976 q^{48} + 193778020814 q^{49} - 813745286618 q^{55} - 1126987620352 q^{60} - 1099511627776 q^{64} + 1765195969654 q^{67} + 2799754386011 q^{69} + 5572732688634 q^{75} - 4508917489433 q^{81} + 3506464191365 q^{93} + 27070404566434 q^{97} - 18197919253811 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
0.500000 + 1.65831i
0.500000 1.65831i
0 −779.500 993.329i −8192.00 69247.8i 0 0 0 −379082. + 1.54860e6i 0
32.2 0 −779.500 + 993.329i −8192.00 69247.8i 0 0 0 −379082. 1.54860e6i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
3.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.14.d.a 2
3.b odd 2 1 inner 33.14.d.a 2
11.b odd 2 1 CM 33.14.d.a 2
33.d even 2 1 inner 33.14.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.14.d.a 2 1.a even 1 1 trivial
33.14.d.a 2 3.b odd 2 1 inner
33.14.d.a 2 11.b odd 2 1 CM
33.14.d.a 2 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{14}^{\mathrm{new}}(33, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1559 T + 1594323 \) Copy content Toggle raw display
$5$ \( T^{2} + 4795259051 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 34522712143931 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 19\!\cdots\!11 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 2249175235)^{2} \) Copy content Toggle raw display
$37$ \( (T + 31003015687)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 16\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + 54\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{2} + 39\!\cdots\!91 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T - 882597984827)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 21\!\cdots\!75 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 85\!\cdots\!75 \) Copy content Toggle raw display
$97$ \( (T - 13535202283217)^{2} \) Copy content Toggle raw display
show more
show less